JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 12, NUMBER 9

Remarks on Lightlike Continuous Spin and Spacelike Representations of the
Poincaré Group

A, Chakrabarti
Centre de Physique Théoreque de l’Ecole Polytechnique 17, rue Descartes, 75, Paris V, France
(Received 23 June 1970)

Certain classes of unitary representations of the lightlike continuous spin and the spaceli.ke cases are
constructed. The generators in these representations involve operators forming the “intrinsic”

algebras (i.e., commuting with the orbital parts) E, and 0(3, 1) for P2 = 0 and P2 < 0, respectively. The
parallel constructlon for P2 > 0 involving an mtnnsxc 0,4 algebra is indicated, Equwalence relations
with certain other forms are gwen through a unitary transformation. The physical significance of the
“translation” generators of E; is brought out in terms of the projections of W orthogonal to P. Corres-
ponding results for the O3 i) and O 4 algebras are given, For the continuous-spin case, these opera-
tors are shown to provide a basis with extremely simple transformation propertles related to a certain
symmetric toplike behavior even under Lorentz transformations. With a view to future use, the matrix
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elements of W on the energy-rotation basis are calculated in a unified manner for all the three cases,
P2 2 0. A deformation formula leading from zero-mass continuous-spin representations to spacelike
ones is studied. Certain types of nonunitary representations are briefly introduced at the end.

1, INTRODUCTION

Zero-mass, continuous-spin, and imaginary-mass
representations of the Poincaré group and the
corresponding basis functions have recently be-
come of interest in connection with crossed-chan-
nel partial-wave analysis (see some of the sources
quoted in Ref. 1), Also speculations have been
made about the possible existence of faster-than-
light particles. In this paper we will discuss cer-
tain types of representations for the above- men-
tioned cases, their relations through a deformation
formula, and the matrix elements of certain inter-
esting operators on the bases introduced. Though
in this article we will be mainly interested in the
cases P2 < 0, the parallel results for P2 > 0 will
be indicated wherever necessary. In particular,
the matrix elements of W on the energy-angular
momentum basis are given in a form valid for all
the three cases. These results will be used in a
separate article, 1 to calculate the transformation
coefficients connecting the momentum and Lorentz
basis, in a unified fashion for all the three cases,
namely, for positive-, zero-, and imaginary-mass
representations, These latter results are, in turn,
of interest for analysis in “ Lorentz partial waves”
of scattering amplitudes for particles with spin,
But, apart from such applications, certain opera-
tor structures and symmetrical and simple pro-
perties exhibited by the formalism seem to the
present author to be intrinsically attractive.

2. CONSTRUCTION OF THE REPRESENTATIONS
Elsewhere? we have discussed how, starting with
the postulated forms (Sec. 4 of Ref, 2)

M=-— z"PX—-i-S N=-—

. d
aP ZPO?)T) + ‘I' (2. 1)

where

TP =P7 =0, (2.1
one can discuss, in a unified manner, the behavior
of spin for the positive-mass and the zero-mass
discrete-spin cases, The simplest solution for
these two cases are

(2.2)

= X P)/(P° + em), m=0,

S being the usual irreducible (25 + 1)-dimensional
spin matrices and ¢ being the sign of the energy.3
It was also shown in Ref. 2 that a unitary trans-
formation by the operator

U = exp(i{ P152 — P2S1)/[(P,)2 + (P,)2]1/2}6),

(2.3)

where

6 = tan~1{[(P,)2 + (P,)2]V/2/P3}, (2.3")
leads to a representation for the zero-mass dis-
crete-spin case, where among the three compo-
nents of S now only S, appears in the transformed
generators, RThlS is obtained here as a particular
case of (2. 18)-(2. 21) by putting 71 = T2 = 0.] This
corresponds to a diagonalization of the helicity

U(s-B/|P)U-1 = 5, (2.9

which is an invariant for such representations,
The condition, implied in (2, 1) and (2, 1),

N-P +P-N = — iP0 (p. 2+ aip -P)
- iP°(2P- a‘} + 3) (2.5)

_ ipO 9 )
iP (2 IPl5157 + 3),

corresponds to the property that the spin index ¢
of the state |p, ¢) is invariant under a Lorentz
transformation collinear with the initial momen-
tum p. This corresponds directly to a basic pro-
perty of “physical” spin for real particles. More-
over, here and in Ref, 1 we will find it very useful
to consider (for the general case, including con~
tinuous-sping and spacelike ones) the action of the
operator (N« P + P-N) on the states

.7]3 >

diagonalizing the energy (p,), the angular momen-
tum ( j, j3), and the helicity ?u). For this purpose
also it is good to have (2, 5) built into the repre-
sentation of the generators for all cases: This is
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a criterion of simplicity assuring that, at least for
Lorentz transformations collinear to the initial
momentum, our representations will behave like
zero-spin ones, Alsc we would like o be able to
consider pure spatial rotations in a uniform
fashion for all cases, including spacelike repre-
sentations. So we propose to search for repre-
sentations of the generators of the form (2. 1) and
(2.1°) for lightlike {continuous-spin) and spacelike
cases, We can always diagonalize helicity after-
wards through the transformation (2. 3). But, in
our opinion, a symmetrical treatment of the rota-
tion generators as in (2. 1) suggests constructions
for N which, as will be seen, bring directly into
evidence certain interesting operator structures,
The significance of this statement will be clearer
later on,

We know that, for zero-mass continuous-spin rep-
resentations discovered by Wigner, we have the
little-group algebra E,, with the generators
satisfying
[83, T1] = iT2,

[$3, T2] = —iT1, [T1,T2]=0,

(2.6)
and that, for imaginary mass, we have the little
group SU(1, 1), with
[33’ Kl] o Z'KZ,

{Kl, KZ] = —

[$3,K2] = —
S8,

iK1,
(2.7

However, in our case, the symmetrical appearance
of the three components of S in M in (2. 1) suggests
the possibility of a rotationally symmetric appear-
ance (in N) of the generators (8, T) of £ and 8,X)
of 0(3, 1) respectively, for P2 = 0 and Pg
commutmg with the orbital parts and satlsfymg

[8t,87) = ie;; Sk, [Si, TV] = ieii Tk,

[Ti, T4] =0, (2.8)
and
[S%,87] = i€;;,S%, [Si,Ki]=ie;; Kk 2.9

(K, K] = — i€, S

[We will, however, demonstrate unitary equiva-
lence of these representations to those in which
the usual little-group generators alone appear.
See (2. 18)-(2.21),]

Again the condition (2. 1’) suggests that we try

such combination as

8xP), (8xP)xP, (T XP),
(KxP), (KxP)xP,

(T xP) xP,
(2.10)

The simplest solutions satisfying
[NV, Ni] = i€, M *

turn out to be (including ¢, the sign of the energy
as indicated in Ref. 3)
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(a) N=-—iP0 ap P2 (POS + ¢T) xP, P2=0,
(2.11)
N=—:P0.L + L (pos + emK) xP,
3P ' Pz
P2 =—m2, (2.12)
(b) N=— P02+ L [pos + |P|-1 (T x P)] xP,
P2=0 (2.13)
N=—5P0§§+ ﬁ;lﬁ
x[POS + |P|-1m(K xP)] X P,
P2 =-—m2, (2.14)

The hermiticity of (8, T) and (8, K) guarantees
that of N and hence the unitarity of the represen-
tations.

Other more complicated solutions can be found,
but they do not seem to be of particular interest.
{The Casimir operators of E; [or 0(3, 1)] appear-
ing above can not be expressed in terms of the
generators (P, N, M) and hence have no direct sig-
nificance for the Poincaré group. The utility of
the spinor representations for neutrinos shows
that in certain cases it may be of interest to intro-
duce a larger “intrinsic” algebra than is required
by the structure of the little group. We apply this
lesson here and interpret afterwords T and K.}

For ¢ = +1, we note that

el-ie(SP/1PD)E] (ET x.l.g_l_> elic@ /Pl

- (eTT—;TE) cosg + (I‘XT%) X %Siﬂe-
(2.15)

We have of course, an exactly similar formula for
K.

Using (2. 15) and the fact that (S-P/|P| commutes
with the rest of N in (2. 11) and (2. 12) (and, of
course, with M), we see that (2. 11) and (2. 12) can,
respectlvely, be transformed to (2.13) and (2. 14)4
putting in (2. 15)
6=1u/2 (2.16)

(for other values of ¢ we get intermediate types
of representations).

Let us also nole that changing the last velation of

Eq.(2.9) to
[Ki,Ki] = i€, K, (2.17)

i.e., consideving the generalors of 0(4) rather

than 0(3,1),we obtain,in (2.12) and (2.14), repre-

sentations for the timelike case with

P2 =m2 >0, {2,177
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This shows that all the three types (P2 2 0) can be
cast into closely similar forms, However, for
P2>0,(2,2) provides a simpler solution and,
moreover, the forms (2. 12), (2. 14) become singu-
lar for the rest frame

p=0.
Introducing now the transformation U [Eq. (2. 3)],
diagonalizing the helicity operator, we obtain for
M [which is always as in (2.1)]

- . 0

Mty = UMU™1 = —iP X535 + ¢,
where

¢ = (P1, P2, (P2)1/2)§3/[(P2)1/2 + pP3], (2.18)

For (2.11) we obtain (using P%/P2 = 1/PO for
P2 =0)

— _ 4;p0 0 1
Niy = — P E——P-+n+e-r;2—x, (2.19)
where
n = (— P2, pP1,0) S3/[(P2)1/2 + p3] (2.20)

and

X1 = T2pP3 + (p1T1 + p2T2)P2/[(P2)1/2 + P3],

X2 =T1p3 — (PlTl + P2T2)p2/[(P2)1/2 +P3],

x3 = (T1p2 — T2p1), (2.21)

We have an exactly similar form (except for a
factor |p0|/|P| before n and the substitution

T - mK) corresponding to the transformation of
(2.12). [In order to exhibit the property indicated
in Ref. 3, separate determinations of the sign of
the square root (p2)1/2 is to be used according to
the sign of €. We do not propose to enter into
these details as we will not make any use of the
transformed representations. |

The transformed versions (always with the same
U) of (2,13) and (2. 14) correspond to the forms
given by Moses® (except for his conventions re-
garding ¢), and so we refer to his results, Moses
has calculated the corresponding finite transfor-
mation formulas and utilized such representations
for the reduction of direct products. He has also
considered the relation of such representations
with the canonical form (2. 2) for the positive-
mass case,

Let us now consider in more detail the role of the
operators T and K. We note that in (2. 18)-(2, 21),
only the generators of £, [Eq. (2.6)] (53, T1, T2)
appear, whereas in (2, 1) and (2, 11) we have all
the six generators (S, T) of E, [(2.8)]. The situa-
tion is similar for the case p2 = — m2, only the
subgroup generators (2,7) remaining out of the
six of (2.9). Let us, however, note that in (2,11)-
(2.14), T and K appear only in the combinations

(T xP), (KxP).
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Thus only the componenis
T=T-— (T-P/|P|)P/|PI|) (2.22)
and .
K=K— (K-P/|P|)(P/|P)) (2,22

orthogonal to P enter inlo play.

The significance of T and K becomes clearer on
considering, along with P*, the other two funda-
mental 4-vectors of the Poincaré group, namely,

W = (P -M*# = — {[Pt,N-M] (2.23)
and
Gt=13% (P'M + M'P)* = — }i[P¥, (N2 —~ M2)],
(2.23)

[M is the antisymmetric tensor M#¥ or (N, M) and
M* is its dual or (— M, N}, ]

More explicitly, we have

W =[P-M, POM — P xN] (2.24)
and
=3[(P*N, PON + P x M) +(H.c.)],  (2.25)
so that
P xW = PO[G — (P/PO)G°] — P2N. (2.26)

From (2.1) for all the representations considered,
WO = P*M = P-S. (2.27)

From (2.11) we obtain for P2 = 0

W =W — (POWO/P2)P =W — (WO/PO)P = — ¢T

(2.28)
and
®/IPl) x W = €(G — GOP/PY)
=—¢e@P/IPl) xT
=—¢e@®/IP]) x T. (2.29)

(The negative signs of — T can be absorbed in the
construction of the generators if so desired. See
Ref. 4).

In the corresponding results obtained from (2. 73),
the roles of T and P X T are interchanged as
compared to (2. 28) and (2. 29).

We have, of course, an analogous result in terms
of mK for.p2 = — m?2,

Thus, we see that T and P/|P|x T correspond'to
the two projections of W orthogonal to P. These
projections have particularly interesting proper-
ties (see the following sections), and one of the
aims in constructing the preceeding representations
was to exhibit them explicitly in the generators
themselves in a symmetrical fashion. In the trans-
formed representations such as (2. 19), these
features are much less evident.
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Let us finally note that,using (2.11) or (2. 13), we
obtain

w2 =—(T)2 = [(PIP]) x T)2

=—[T2 — (T°P/|P|)2], (2.30)

and similarly [(2.12) or (2.14)] we obtain
w2 = m2{@s'P/IPl)2 — [K2 — (K-P/|P])2]}. (2.31)

For the corresponding helicity diagonalized repre-
sentations, these become, respectively,

UW2U-1 = — (T% + T%) (2.30)

=m?2(S§ — K$ — K3).

These are the familiar invariants of the corre-
sponding little groups.

3. SPECIAL FEATURES OF THE CONTINUOUS-
SPIN CASE

We now propose to study in more detail, for the
case

P2=0, W2=-—r12

the properties of the operators

W =w — (Wo/PO)P (3.1)
and
G = G — GOP/PO = (P/PO) x W (3.2

Let us first_ note that the commutators of P

(or P/P0), W and M, close to form an algebra,

Wk,

[Pi,Wi] = 0.
(3.3)

[Mi,Pj] = iEijkPk,
[Pi’Pj] =0,

[Mi, Wi] = ie
[VVi,ﬁlj] =0,

ijk

We will call this algebra E%’, the index (2)
indicating a doubling of the usual triplet of the
translation generators of the Euclidean algebra
E3. This algebra has three Casimir operators:

P2, W2, and P-W (3.4)

among which only the particular case correspond-
ing to the zero value of the third one,namely,

P'W = 0’
along with
P2 :pz’ say,a.nd WZ = — W2 = 7'2,

(3.5)

is relevant for our present purposes [see, how-
ever (A18)]. (All the generators of the above
EQ commute with P0).

The matrix element of W acting on the basis
diagonalizing the E; subalgebra of (P, M) can be

A, CHAKRABARTI

obtained directly by using (3.3) and (3.5). This
aspect is discussed in the following section.

[Since the last term of (3.2) can be used to obtain
the action of G on this basis, we need not separate-
ly consider the enlarged algebra including G.

See (A18).]

Let us consider now the effect of pure Lorentz
transformations. We have

[ix*N, P/P0] = — y(a x P/P%) x P/PO, (3.6)
[ixi*N,W] = — x(# X P/P%) x W. 3.7

For G, again we have a similar formula. Thus

it is seen that the thvee constant length and

mulually ovthogonal operators

P/PS, W,
with
(P/PO)2 =1,

and G,
W2 =72 = G2, (3.8)
and

PW=PG=WG=0,

voltate as vigidly fixed axes not only under vota-
lions, bul under puve Loventz transformations as
well. Under the latter, the rotations are, of course,
determined by those of P about the axes # X P.
[The angle of rotation is given, for example, by
formula (A19) of Ref.3]. Thus a “symmetric top-
like” behavior (with two axes W and G of equal
length) is generalized under the whole Lorentz
group.

A more explicitly four-dimensional point of view in
constructing projections of W, which include (3..1),
is as follows.

Using

P2=0
and
WAW =i(PAW)*, (3.9)
i.e.,
[We,W¥] = i€, (PPWe — PWP),

one can show that the components of

W-n

Wiy = (W“Tﬂ p), (3.10)

n being any c-number 4-vector, commute, namely
Wiy A W,y = 0. (3.11)

Of these four components only two are independent,
since

P-W(n) =0 =nWg. (3.12)
Also

W(n). W(n) = W2, (3 . 13)
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Moreover, as a consequence of (3. 11),the compo-
nents of the tensor

PAWy,=PAW (3.14)
commute mutually.

For
n= (190)’

we get
W(n) = (0,W). (3.15)
The choice
n=(1,0,0,1) (3.16)

would correspond more directly to the operators
of the little group E,.6

Let us now consider the basis |p, 7), such that

Pelp,ry =prlp, 7,

Wip,» =7lp,m, (3.17)
with
prr=0.
Corresponding to the eigenvalues of P, (3.18)
Dy = (v,0,0,w),
we have from (3.1)
Wiy = w(M* + N2) = wrl,  say,
W?O) = w(M2 + N1) = w2, say, (3.19)

Wiy = 0.

As is well known (M3, 71, 72) constitute the usual
little group E, for lightlike momentum.

Thus, we see that for p, , = 0,the |p, 7) basis
coincides with |p, 7) basis, which diagonalizes the
continuous generators of the usual little group.?
We can, of course, construct, at will, operators
which coincide with 7, and 7, for p parallel to the
z axis, having other null components or not. Among
these, W corresponds to a maximal simplicity in
the following sense. In considering the transfor-
mation properties of the momentum states we have
in any case to take into account the parameters
corresponding to the transformation undergone

by ps. For states labeled by the eigenvalues of

PO,p, W, the above-mentioned parameters are all
that we need, since, as we pass to other frames,

T rotates as if rigidly attached to p.

Thus we have the extremely simple transformation
property that for any transformation A of HLG
(homogeneous Lorentz group) such that the direc-
tion  or (= p/Ipl) undergoes a rotation, R,

UA) 1po,p, ) =1p0, 5,77, (3.20)
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where
p’=R'p and T =RT.

The necessary group properties are satisfied
without even additional phase factors. In this
sense, the simplicity achieved is comparable to
that of the zero-spin case. Our basis states are,
however, more singular due to the presence of
continuous parameters corresponding to a rota-
tion 0 to 27 in a plane orthogonal to p. It is con-
venient to parametrize the states by starting
from one basic configuration, say,

P = pl(0,0,1) (3.21)

and
T(o) = T(l, O, 0)-

The general states can then be labeled as

27

where

(3.22)

2 =(p060,¥)

corresponds to the rotation R(¢, 6, ¢) such that

R(¢,8,¥) (p(o); T(o)) = (p,7). (3.23)
Unlike the zero- or the discrete-spin case, we
have to consider explicitly not only 8, ¢ (suificing
for p) but also ¥, since we have something like a
rigid body rotation. We adopt the invariant nor-
malization

0177150 2 1o ,
BT = g s(lp =1 Do(@’ — 9)o(r — ),

(3.24)
the corresponding completeness relation being

I= dede\dQ("—%g)‘%oT> 2O (3.29)
where
gn2
(R — Q) =i 8l — @))6(6 — 67)6(y — ¥)
and sind (3.26)

dQ = (1/872)sinbdg db dS.

In Ref. 1, we will use systematically the energy
0

angular momentum statesl% ”>, such that
3

. 2 Pom
(PO, MP/|P|, M ,M3)l].j3 >
= (6%, 1,3 + 1),55)| 1) (3.27)

Using the results of the following section [and
(3. 27)] regarding the matrix elements of P and
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. . 1p0u .
W on the bas1sl i >,we can show that [consis-
tent with (3. 24)]

7Pok|PoT 2 +1\1/2
IR = 5oz otba— ot — (¥t

x D (9,6,4) (3.28)
(corresponding to the symmetric toplike behavior
of Ip,)). This result differs from that for the
usual momentum-helicity ket through the factor

(@7)~1/2¢7im,

4. MATRIX ELEMENTS OF W ON (p,, 11,7,73)
BASIS (ROTATION-INVARIANT HELICITY
LADDER OPERATORS)

We will use these matrix elements in the follow-
ing section [as in (3.27)]. In Ref. 1, extensive
use was made of the operators

A. CHAKRABARTI

WM and P x WM, 4.1)
where
powo
W= (w _Bowe )
ipl2

These operators commute with PO and M, but
change the helicity values (u) by +1. Hence,com-
bining these two as in (4. 6), we obtain “helicity
ladder operators” commuting with PO and M. The
derivation of the matrix elements of W in Appen-
dix A holds for all the cases (P220).

For zero mass we have the matrix elements of
the E{? algebra (3.3). For positive mass m, we
could have considered the algebra formed by
M,P,S, where

= (1/m)[W —

However, in order to treat all cases in a uniform
fashion, we write the matrix elements as follows:

(WO/PO + m)P].

73| POB [(G + 12 —jg]/2 PO +1
w2 ’jj3 >= G+0[E+1)E + 3)]1/2[ aufi +u +2)(j +p + 1)}2/2 j +1,
B a(_){(] —HEDU - DR J +Nl]—3 ! il— j(-]T_—::- 1) [a(+){(j — WG +pet 1)}1/2| ?j(; B+ 1>

__j%]l/Z

+ a(_){(j + (i — e+ Y2

where

= 5[~ W2 — P2u(u = D)2,

l#)

»O u -1 [j2
i >]+j[(2j —D@ + DI

[— awmli — WG —n- 1)}1/2| po Y 1> +al(G + WG +p— D}/2

PO u—

J— 1 “4.2)

it

4.3)

The action of the other components of W can be obtained as usual by commuting W3 with (M, + iM,).

From these results we obtain

-M‘]] “>__[ (+){(] — i+t 1)}1/2‘17 g+ 1> +a(_){(] G-+ 1)}1/2‘17 g+ 1>] (4.4)

and

__xW
(]

—efG +mG—p+ 1)} 1/2.1;’]_3 M= 1>] .

Hence the helicity ladder operators (commuting
with PO and M) are seen to be

W =i@/|Pl) x WM. (4.6)
Let us now note that for
(a) P2 =m2, W2=—m25(S +1),

20y = m[S(S +1) — p(p = 1)]i/2, 4.7

i]]3"> [IPI W M] \ Fy=—i [“m{(j ~ WG +p+ 1)}1/2“;}(;“ * 1>

(4.5)
-
() P2=0, W2=—12%, 204=rT, (4.8)
(¢) P2 =—m2, W2=m2K(K +1),
20y = m[— K(K + 1) + p(p £ 1)]2/2
=im[K(K + 1) — p(p £ 1)J1/2, 4.9)

where, for example, for the principal series of
su(1,1),
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K=(—% +in) or KK +1) =— (3 + 12), (4.10)

and for the discrete series (withn =1,2,--*)

K =—n/20r KK +1) =n/2(m/2 ~ 1),

with [pl=n/2. (4.11)

These are the cases we need in Ref. 1.

5. DEFORMATION OF CONTINUOUS SPIN TO
SPACELIKE REPRESENTATIONS

This type of deformations have already been intro-
duced in Sec. 4 of Ref. 8. Here we will consider
it in more detail.

Let us start with a representation with

P2 =0, W2=—r72, (5.1)
Then, using the definition (2. 23') of G¥, we can

show that each of the two 4-vectors,

(£) Ge + qP, (5.2)

Py =

satisfy, along with (N, M), a Poincaré algebra. The
arbitrary parameter 7 has to be real for P to be

Hermitian. Moreover,

A

Pz =— 12, (5.3)
and
Wiy =— 12(3 +12)

=12 § +in(-§ +in +1), (5.4)

where W has been defined as in (2.23) in terms of
P. Thus we are led to a spacelike representation
with the continuous-spin parameter playing the
role of the mass and the deformation parameter
71 corresponding to that of the unitary prineipal
series representation of the little group SU(1, 1).

Corresponding to the ambiguity of sign in (5.2),
the operators P y can be related through a kind
of time revers by choosing to define this opera-
tion through the auxiliary operators Pk, as
T(Poyp)T-l = (pO’ - p)° But’ also,

Pg*-n) = Pg-.-n)’ (5.5)
Since the representations +7 of SU(1,1) are equi-
valent, and both signs of energy are included for
spacelike representations, diagonalizing P(+ or
ﬁ(_),we obtain the same irreducible basis.

From now on, we will consider only one sign +)
for the sake of simplicity and write Pf‘+) as Pu.
We would now like to derive the transformation
coefficients
< P Pou
]J Jia

SPACELIKE REPRESENTATIONS
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We propose to do this in two steps.
Let us first consider the intermediate basis

POIJ
Jis

This is possible since (N*P + P*N), appearing in
PO, commutes with u. In fact,using (2. 11) or
(2.13), we have

p()l»t

» <J] i3

N 3 ﬁo“ Pok

= [ i6300 + 300 + (G| ), 6-6)
or

.bolJ- Po“

~ -(3/2+i) ~ipolp
=C e oo,
iis (Po) Py

(5.7

(For the sake of simplicity we consider only posi-
tive pgy, € = 1.)

In order to determine C( P 0), let us first note that
due to the presence of both signs of the energy we
have for spacelike representations the complete-

ness relation (limiting ourselves to a fixed n and

7 for the moment)

I= Zu)fd‘lf;a(ﬁz +72)|p uXpp |

Z’Ip|>< Ipll
elpl>< lplﬂ

(5.8)

o~ P2
=Z“)f0 dlp]mfdﬂz:

e=*)

_ o+ |pl
_§3f0 dlpol-g- ﬁm[ﬁ@1
[k or { can be used and = (6, ¢)].

The corresponding relation for the rotational basis
is obtained on replacing the Q-integration by sums
of (7,j3). Inserting this latter relation in

U=t o, =50 |1 )

and, using (5. 7), we obtain (apart from a phase)

Colbg) = (2/m|pl)rrz. (5.9)

This corresponds to the normalization

oM > < oﬂl oﬂ- >
[ ]Js I] 113 Jia Gmt'ou’ﬂ:s

x [2/(Bg + 72)1/2]6(5§ — By). (5.10)
The consistency can be verified by inserting the
completeness relation for the p° states in (5. 10).
In considering a larger space by including a factor
8(n" — ) in (5.10), we should remember the
equivalence of n and — 7, and hence restrict the
range of 7 to zero and positive, or negative values
only.
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Let us now consider the passage to the states

Poll

Jis
corresponding to the diagonalization of P-M/|P|.
We have

P:M=(G +7P)M,

= (G_GOI?> M +(Go +ypo) B M (5.11)
= g X WM + B B2 M (5.12)

Hence, using (4. 5), we have

po;i _ ( . .
———sm() (5 — +u +1)]172
lf'l i7s [ w( +u +1)]
pou +1 . . Do —1
—[G +wWG~p +1 1/2, Po
i [G+u)—p+1)] i )
A, Dokt
+ op =0 .13
cosdy 0 >, (5.13)
where, using p2 = 13'5 + 72, we have defined
sind = 7/|p| and cosd =po/1pl. (5.14)

Hence, we obtain,

PolJ- P [ j 3
is n> EI 0 n>$Df,;,(o,—9,—1r/2). (5.15)
Thus, finally,

pol-‘-n> (21;|p|) -1/2 Ef dep ~(1/2-in) elﬁo/f’o

’58 =—724p2.
(5.16)

We would like to add that far the discrete series
(see 4.11), or the supplementary series of space-
like representations, we have to replace 7 in
(5.2) by +i(K + 1/2). A pair of such nonunitary
representations can be used to define a scalar
product exactly as for the spinor representation;
namely, we define the scalar product either as

x D0, —~8,— 11/2)'1.].3 T

*i(K*1/2)<| > ti(K+1/2)’ (5.17)

or by doubling the components by coupling the two
i

(PO
3
M |.7]3 =73 jj,

, (Ml zMz)|P u> =[(jFjg) 2 (jtjs+ 1)]1/2|
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types (just as for the Dirac equation) and intro-
ducing a metric

I
1 (5.18)
Again, defining
P, == iG" +3(28 + 1)P, (5.19)

we get such a pair of timelike representations
[P2 =72 and W2 = — 725(S + 1)]. Scalar products
can again be defined exactly as for the preceding
case.

6. A CLASS OF NONUNITARY SPACELIKE

REPRESENTATIONS

So far we have mainly considered unitary repre-
sentations (except at the end of Sec. 5).

For P2 = — mZ2, an interesting class of nonunitary
representations can be obtained by constructing
[in closest possible analogy with (2. 2)] the genera-
tors as

M——zPXaP S,
N, =—iP0 o+ SXP €1
(€ aP POz im

A scalar product can be defined exactly as for
(5.17) or (5. 18), namely as

or through a metric l I I 6.2)
(=F)< l >( I g I P (
where the I is now (2S + 1)-dimensional unit mat-
rix. From (6. 1), we obtain

W2 = m28(S + 1). (6.3)

Thus W is now a timelike vecfor.

These representations can be transformed to the
spinor representations through a generalization

of the canonical transformation treated elsewhere,?
since in this case the Lorentz transformation
reducing P to rest is a complex one.

Such representations may be of interest in con-
sidering exchanges of particles of definite spin S
[we have — W2/P2 = §(S + 1) exactly as for real
spin-S particles] and spacelike momenta.

APPENDIX

From the known results of the E; algebra (the
general case [0, is discussed in Ref 10), we can,
using suitable phase conventions, write down the
matrix elements

]:l:] +1 (Al)
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and y
0 Ipl (j +1)2—pu22/2 . : pou
p3|PH pl_ | . +1)2 — 32| PR
s/ G+ | FI)2 +3) [(G +1)% — 3] j+1 13>
uj pou Ipl[ (j2—p2) 12 . 172 |P°m
+ —-7—3—5 PUEN + 1B (_L—R_S - - ). A2
Ip|1(1+1 |JJ:; i (=12 +1 7% = 73] J—113> (42)

The matrix elements of (P, + iP,) are obtained on
commuting P with (M, + iM,).

In order now to obtain the matrix elements of W
on this basis, we will utilize the basic relations
W X W = i(POW — WOP),
P-W =POWO0 =pPOP. M,

5 A3
[Pt, Wil =0, (43)
W2 =— W2 + Wg =— W2 + (P-M)2,
and others obtainable from them.
Thus, for example, using
[P*M, [P+M, W]] = P2W — POWOP, (Ad)
we obtain easily
1— (g’ — p)2 w3| P ok
[ (W' =] <J]3 I |J73 >
Dol
=4,,’ A5
““(pl) i73 l]Ja (43
Hence
0 0 o 0 o
393 M3 743 J]

and other nonvanishing matrix elements corres-
pond to

p'=nzl, (AT)

(We see at once that by veplacing W by W the term
u' = u disappears and the other two ave unaffect-
ed.)

Again utilizing the relation

[(P-M, W3],P3]=0, (48)
we obtain
' POL’| 3| 2O\ /PO p3| POu
“§ (u “)[ 33 |J]3><J ‘i3 l]‘js
_(P°|p P°u><ﬁ9u 3|P0u
.7.73 773 7]3 Jis

(A9)

This leads to simple recursion relations which
enable us to factor out completely the j dependence

of the matrix elements of W, by starting with the
form (corresponding to the usual Wigner-Eckart
factorization)

w3 pOouN _ b
E: u’-u,u*x
pou’ pop’ ‘W pou\; |20
X j+1j3> ¢ | RS
POUN [z 172 |pO1’
w - \ .
J—1| | > 78] 1—113>.
(A10)
For u’ = u we have already the relation (A6).

2w G e -

For u’ = p + 1, we obtain from (A9), with a con-
sistent choice of phases,

Uz p +2)(G+p+1)]272
(G + D[ +1)(2 + 3)]2/2

FANTES POu
) =

WL 2

1.;0 pxl w ?Oli

! ’ > (Al11)

LU F G F p =172 po " ||,,o>
g2 —1)(2 + 1)]172 \p £l )

(20 w2

_[GFwG+p + )2 p0 p°
iG+1) 11“ " )

Now, using the relation
wop2

[[P+M, W3], W3] = — POpP3Ws3 + wopg (Al2)

and considering, for example, the element
31 w3ilP ON-
J+2]‘[PMW]’W]| >

we finally obtain

o L ARV L DR

< (el

Pl LA
=z (pg —p2)u =2 p2p.
(A13)
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Hence

o L YO L

=C—()p2u(p +1). (A14)

The parameter ¢ is obtained from the relation

W2 = W3 — W2, (A15)
giving

C=—3:W2. (A16)
Thus
O L PRV L

=5 [ W2 —P2u(p £ 1)]. (A17)

A, CHAKRABARTI

Putting all the foregoing results together, we
obtain finally (4. 2).

The above results, put together, give the matrix
elements of W given in (4.2). For p2 = 0 and
W2 =12 [(4.8)],(M, P,W) form the E%) algebra
(3. 3). If we want to include a third triplet of
"translations" (say V) to form (in an obvious nota-
tion) an E§3) algebra, its matrix elements will be
given by those of

[VI[a(P/|P]) + B(W/7) + y(P/[P]) x W/r],

(A18)

where (o, 8, y) are suitable direction cosines.
Putting y = 0 and @ = cosf, 8§ = sind, (M, P,V)
constitute a general representation of E?) , with
P+V = 0. Its matrix elements can be written
down combining (A1), (A2), and (4. 2).

A, Chakrabarti, J. Math, Phys. 12, 1822 (1971).

A. Chakrabarti, J, Math, Phys, 7, 949 (1966).

In this paper and also in Ref. 1, € is introduced in such a
fashion that M and N both remain invariant under the reflec-
tion P#— — Pt The relation of this feature to the crossing
properties are discussed in the introduction and Sec. 2D of
A, Chakrabarti, J. Math, Phys. 11,1085 (1970).

In fact, since, for P2 = — m2, € is not well-defined for p0 = 0,
the form (2. 14) seems to be more suitable for this case. We
have introduced € in (2.11) and (2. 12) in order to ensure the
property indicated in Ref. 3, though the computation relations
are independent of its.presence. Besides this, it should be
noted that the liberty in choosing a phase factor + 1 in the
representations of T and K introduces corresponding ambi-
guities of sign.

(2.5). Thus, for example, compare the corresponding repre-
sentation of Iu. M. Shirokov, Zh. Eksp. Teor. Fiz. 33, 1196
(1957) [Sov. Phys. JETP 6, 919 (1958)]. The continuous spin
representations were introduced in the fundamental paper of
Wigner [Ann. Math, (N.Y.) 40, 149 (1939)].

6 A.Chakrabarti, thesis, University of Paris 1965.

7 The connection between the bases |p, ) and |p, 1), u being
the discrete eigenvalues of M, is given by {i|7) = (2n)~1/2
e~it? where 7 = 7 (coso, sing). Strictly speaking, we should
use the notation |[r]) in order to indicate that half-integral
values of u are included as well. The same holds for the
notation 7. This need, however, cause no confusion.

8 A, Chakrabarti, M. Lévy-Nahas, and R. Sénéor, J. Math, Phys.
9,1274 (1968).

9 A.Chakrabarti, J. Math. Phys. 4, 1215 (1963); 5, 1747 (1964)

5 H.E,Moses, J. Math. Phys. 9, 2039 (1968). It is also of
interest to compare our representations for P2 < 0 with
those not satisfying the basic condition given by our Eq.

(Appendix A).
10 A, Chakrabarti, J. Math. Phys. 9, 2087 (1968).
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1. INTRODUCTION

We propose to study in the following sections the
transformation coefficients connecting the momen-
tum and the Lorentz basis of the unitarity repre-
sentations of the Poincaré group. We will make a
detailed study of the following cases:

{c) spacelike:

P2=_m2<0, WZ=m2k(k+1), (1.3)

where either
E=—4%+4in, 7 real,

(a) lightlike continuous spin:

or k=—n, n=%,1,...

P2=0, W2=_172<90; (1.1)

(We exclude the case — 3 < k2 < 0.)

The zero-mass discrete spin (P2 = 0 = W2) has
already been studied in Ref. 1 and the relatively
simple positive-mass zero-spin (s = 0) case will
be briefly treated in Appendix B.

{(b) timelike nonzero spin:

W2 =—m2s(s +1), s=3z1,";
(1.2)

P2 =m2>0,
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Hence
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giving
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Putting all the foregoing results together, we
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1. INTRODUCTION

We propose to study in the following sections the
transformation coefficients connecting the momen-
tum and the Lorentz basis of the unitarity repre-
sentations of the Poincaré group. We will make a
detailed study of the following cases:

{c) spacelike:

P2=_m2<0, WZ=m2k(k+1), (1.3)

where either
E=—4%+4in, 7 real,

(a) lightlike continuous spin:

or k=—n, n=%,1,...

P2=0, W2=_172<90; (1.1)

(We exclude the case — 3 < k2 < 0.)

The zero-mass discrete spin (P2 = 0 = W2) has
already been studied in Ref. 1 and the relatively
simple positive-mass zero-spin (s = 0) case will
be briefly treated in Appendix B.

{(b) timelike nonzero spin:

W2 =—m2s(s +1), s=3z1,";
(1.2)

P2 =m2>0,
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The techniques and results of two previous
papers!;2 will be used throughout.

One of the interests of the basis functions we

will calculate as the transformation coefficients
is the possibility of their use in generalized
partial-wave analysis of scattering amplitudes
for particles with spin. For particles of zero
spin the results of Vilenkin and Smorodinsky3 and
Winternitz et al.4 generalize the expansions in
terms of the representations of little groups® for
different types of momentum transfer in the
crossed channels. (References to many important
papers on crossed-channel partial-wave analysis
will be found in Refs. 4 and 6.) The timelike case
is of course relevant for the direct channel also.

For the cases where particles with spin are
involved, basis functions corresponding to more
general representations of the Lorentz group are
needed. One way of constructing basis functions
which have mass and spin quantum numbers
associated with them is to calculate the transfor-
mation coefficients for the different cases indi-
cated at the beginning [(a), (b), and (c)]. For the
timelike case with spin (m, s) this problem has
been discussed by several authors.”-2 A common
feature of the above works7~9 is the use of co-
variant spinor representations for the momentum
basis. In our opinion this is not the best approach
since it obscures a very simple and fundamental
relationship which is at once evident when one
uses the canonical basis.2 This is shown below.

Using the canonical basis, let us write (consider-
ing positive energy for the time being)

U(A(P)) IP,S3) = IP(O))s:;); (1.4)
where

p(o) = (m, 0, O, 0)

and A, is the pure Lorentz transformation
reducing the particle to rest.10

Let us now consider the Lorentz basis (which
diagonalizes the rotation subgroup). The required
transformation coefficient is

R FRER)

o)

=2

i1y
A Ad
x([m, s] ];g| U(A(p))‘].];’; [m,s1)

_ /P, S3| i xi
= [rﬁzo,)’s]3|ssg[m’s]> Dt M),

b [778 tms1)

(1.5)

where D7 (A(,) denotes the finite Lorentz trans-
formation matrix corresponding to A 11 and is
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obtained from a study of the homogeneous Lorentz
group (HLG) only.

Had we used spinor representations, the action of
U(A( )) would have given a superposition of states;
and the essential simplicity of (1. 4) and (L. 5)
would have been lost.

The factor <P(o), S3 ’ :g g > turns out to be quite

simple. In fact, using our methods, we can show
quite easily (Appendix C) that, with our conventions,
one obtains

Aj s
<P(0)’ sSl szg> = a(m..s)e”r]oa (1.6)

where a, i, depends only on m and s. The phase
factor can, of course, be absorbed by a change of
convention and @, s, can be determined through
normalization conditions.

We will, however, give a self-contained derivation
of the complete result for the timelike case using
our methods since it permits certain simplifica-
tions {see the remarks following (1. 16)] and per-
mits direct comparison with lightlike and space-
like cases.

It is somewhat surprising that the finite Lorentz
transformations 12-15 using the rotational basis
and the Lorentz basis functions for real particles
with spin?~9 have been studied as two separate
problems, though the direct proportionality of the
solutions is evident for the spin-zero case.

For the lightlike and spacelike cases a factoriza-
tion similar to that of (1.5) is obtained if one uses
Lorentz bases which diagonalize the E, and

SU(1, 1) subgroups, respectively (see Sec.6). The
E, subgroup is constituted by the generators

(M1 + N2, M2 _ N1 M3) and the SU(1, 1) subgroup
by (N1,N2, M3), The unitarity representations of
these subgroups will be supposed to be known,
and certain points concerning the Lorentz bases
which diagonalize them will be briefly discussed
in Sec. 6. But, in this paper, we will be mainly
concerned with the so-called canonical Lorentz
basis which diagonalizes the rotation subgroup
SU(2) and which has been studied in Ref. 1. The
diagonalization of the E, subgroup has not yet
proved to be particularly useful. The diagonaliza-
tion of SU(1, 1) has been much studied in view of
their connection with complex angular momentum
and Regge poles.15719 However, the SU(1, 1)
partial-wave analysis20 gives only the background
and the non-sense terms (of the Regge formalism
for particles with spin) and not the sense terms
which are, after all, the most interesting ones.
These have to be introduced by making other arbi-
trary assumptions.

Hence the identification of the sequences of singu-
larities obtained on diagonalizing the SU(1, 1) sub-
group in the Lorentz basis with the Regge poles
themselves is a somewhat arbitrary assertion.
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In view of such facts direct passage via the res-
pective little groups for the different types of
momentum transfer should not be considered as
the one and only interesting way. Other possibili-
ties should be explored. For expansion in general-
ized partial waves, the essential formal properties
of the basis functions to be used are their ortho-
gonality and completeness relations. It is not obli-
gatory to expand first in terms of the little group
representations and then generalize.21 Whatever
be the nature of the momentum transfer, the rota-
tion subgroup has always a clear physical signifi-
cance. As has been discussed at length in Ref. 2,
the three cases p2 2 0 can be discussed in a uni-
fied and fruitful manner by starting with the same
representation of the SU(2) subgroup for each
case. So, in this paper, we make a unified study

of all the cases using always the canonical Lorentz
basis. We will, so far as this article is concerned,
make no attempt to study explicitly the possible
applications of the basis functions constructed, but
will limit our study to their formal derivations.

A, CHAKRABARTI

The other two subgroups are, however, not to be
neglected and certain important results concern-
ing them already emerge as by-products of our
solutions, namely, the transformation coefficients
between the Lorentz bases diagonalizing the sub-
group? SU(2), SU(1, 1), and E(2), respectively (see
Sec. 6).

Now that we have explained what we intend to do
and why, let us briefly indicate how we propose to
do it. As already stated, the necessary techniques
are contained in Refs. 1 and 2. However, for the
Lorentz basis we will (considering fixed values
of P2 and W2) now use the normalization

Ao hj0>

L . i2

]3]3 Ji’ Jo]
(1.7)

With this convention and considering different
possible values of P2 and the sign of P%(e = + 1),
we will write the matrix elements of PO as

A Jo\ _ gt Ny s 1 ‘ X jgt1 G ldor(i o i Mi 4 1/2 ‘)\ jo -1
0", 0% =Cyo o — +j,t /2|7 + + —Jjo T /27
PO} ) = CI [ —sg)G+go+ 2] § T T h) + Gl (G + o) —do + DJ2 [ Jo T )

HOIN G G — i+ Dz 2T Ty + el G -G +an+ Dpz| L= o), ()
i3 W3
where
P 214 iy o eett? .
clottio — _€€ w2 _p2j(j, + D2, C = T [— W2 —P2ia(ix ¥ 1)]1/2, (1.9)
273 +22) = oldo * L%, G5, 2073 +22)
f
¢ and ¢’ being phase factors to be chosen Defining
suitably.22 The matrix elements of WO(= p-M)
and GO = 3 (N-P + P-N) can be obtained from = [W — (POWO/P2)P],
(1.8) by commuting P® with the two Ca81m1r
operators of the HLG, namely,N*M and 3 we have
(N2 — MZ),respectwely 1 L - 0
LM Ti x WeM) |2 H
As for the momentum basis, the following main 5(W-M % i(P/|P]) )I ]_’]3>
results will be taken from Ref.2. For all the pOLE 1
cases (p2 % 0) one can use the momentum helicity = —op[FWitp+ 1)]1/2| Pl ,
basis and its angular decomposition defined as 73 (1.13)
(with & as the helicity eigenvalue) where
agy = (€"/2)[- w2 —P2u(u+ 1)]Y/2  (1.14)

(25 ¥ 1\12 ;s POy
o, =3 (1) D}, (0,0, 9|2,

N

@:lpl,8,9) . (1.10)
Hence it is sufficient for us to calculate
pOuiArjg p oM 7\.7'0 B i) 1.11
<J]3|J > <173 s > A (1.11)
when
Ao i+ W2 gy (50
{p, u'”3> ( D], (9,6, — ¢)
pOIJ- Ao
i3 17'3>' (1.12)

and ¢ is a constant arbitrary phase factor which
we will choose by convention so as to make our
solutions symmetrical with respect to an inter-
change of p and jo(u == o).

As shown in Ref. 2, representations can be con-
structed in a unified fashion for all the cases
(2 2 0) such that

GO = { (N-P +P-N)

:
_ (] —_ —
"P(PaP+P )

:—2P0<2|P| a1pl 3) (1.15)
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(That is, no extra terms due to spin appear in
G9,)

This relation will be used concerning the action
of GO on the momentum basis.

We will also use a deformation formula (Ref. 2,
Sec. 5) to give an alternative derivation for the
spacelike case in terms of the zero-mass con-
tinuous-spin solution.

Indeed we have preferred to start with the light-
like case since in many respects it is the simplest
one23 and provides a useful check on the proper-
ties of the solutions for the cases

P2 =m2?,
and
P2 =—m2,

w2 =-—mzs(s + 1)’
We = —m2( +n2),

since these must reduce to the continuous-spin
solution under suitable limiting conditions.

For each case we first use the matrix elements
of the operators

PO, WO, W-M, PXW-M,
to obtain difference equations in the parameters
i, jo, 2. For the limiting values #j of i (or *s for
P2 > 0,j =$) we are able to obtain simple differ-
ence equations in j, or x which can be solved
immediately.24 Then the actions of the operators
(P, * iP,) and GO are used successively to extract

the remaining dependence on j and p0 (or |p| for
a given €).

The final step consists (apart from fixing a
constan! normalization factor) in obtaining a
solution for an arbitrary value of u within its
range. It is shown that in our formalism this
can be reduced to the solution of a difference
equation of the type (starting from u = j, for
example)

(Go + M) B + (=N B ja+ (u+ o) Bl
= (x)1/2(jo + M) — ) + o) BYG,
n=+1,0,—1forp2 20, respectively, (1.16)

where Bi]jo is already explicitly known. As will
be seen, one can write down the solution without
undue difficulty. In order to compare with known
things, 25 we may consider our solution for the
timelike case (4. 42).

Indeed, certain results, though concerning the
HLG only, can sometimes by obtained in a more
convenient form in the context of the larger
Poincaré group, since we can use operators to
vary not only Ji; (as does N) but also X and j,.
This gives a wider choice of recursion relations
and we can pick out the most convenient ones. In
our opinion, the forms of the finite Lorentz trans-

1825

formation matrix and of the transformation coeffi-
cients between the Lorentz bases diagonalizing

the rotation and the other two subgroups [E,,

SU(1, 1)] that can be obtained as by-products from
our solutions are examples of the above-mentioned
fact.

It may be noted that our systematic use of the
matrix elements of the operators such as PO and
WO permits us to avoid complicated differential
difference equations2€ and simplifies consider-
ably our work. We are, of course, obliged to use
rather unconventional formal manipulations
involving the variations (A + 7). Matrix elements
of this type have been repeatedly discovered and
discussed by different authors.27 However one
may choose to interpret them, as has already
been emphasized in Ref. 1, they can be used
directly as a quite efficient formal tool in cer-
tain types of calculations. For simple cases
(e.g., the case of zero-spin, zero-mass discrete
spin, and finite Lorentz transformation matrix
for certain limiting values of the parameters)
the known results obtained by other methods can
be reproduced fairly effortlessly. But they also
enable us to tackle the more complicated cases
with relative ease and in a unified fashion. In
this paper we content ourselves with exploiting
to the full their effectiveness in formal calcula-
tions, without attempting rigorous mathematical
justifications of the steps involved.

2. CALCULATIONS OF THE COEFFICIENTS
LCT)
<§? ; K ;‘]f 0>: RECURSION RELATIONS FOR
3 3
4, 75, AND A (GENERAL CASE)

Let us introduce for the time being the compact
notations [see (1. 8)]

, Aj£1 Aj PAUTIDG RE D |
+ 1] = (2o * L po| Mo\ /P11 ],
[0 * 1=y, | jia ><JJ3 i >

and (2.1)

’5?0> <’?.°“ Ao
N3/ N3 1774 > )
Then, considering the action of P9 on the two
. pou N .
f (5 Flpo|¥o
sides o <]]3 ‘ ]]3>,we obtain
.. i = 1} + —1
7 j]3> {[]o ] []0 ]}
+{n +i] + [x =]},

The matrix elements of WO [Eq. (2. 23) of Ref.1]
give us

[)\ii]: )\ii]olpo

i

po
(2.2)

ol (5¥30) = i + 11~ Lo — 1}
—olln + i1~ [~ 1) 2.9

Similarly, using the operator W+M, we have2
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[ @i~ WG +p + P72 <p out 1]]]°> +agl(i +m(i—u +1)}2/2 <p0 n—1 ’-‘j°>]

=— poh? <” g "]°>+ @2{[7 + 1] + [jo— 11} +73{x + 4] + A — <]}
= ot =) (P[0 — (33 +22MLjg + 1] + [ — 11

=—polu2 +32) (%, “|”°> + (73 +a){ +i] + A — ]},

Jis #is

(2.4)
(2.5)

(2.6)

where we have used (2.2) in deriving (2.5) and (2.6). Again using the operator P X W*M2 and simpli-
fying the rhs as before by using (2. 2) and (2. 3), we obtain finally

A

[“(ﬂ{(J — W +p+1)p/2 <P°u +1 ’]

|p|( ) w2 + 222 MO% (Tx)‘j% a9 +i]— -]}
(jﬁo)wg +22){[jg + 11— [Jo — 1]

B3
= 1p(2) 2 — 3. jjao

(For zero value of j, or A we cannot, of course,
put it in the denominator. This need, however,
cause no confusion.)

Hence, separating the values (4 + 1), we can write
)\]0
Jj 3 >

:(po + lpl%)(‘ﬁ + A2)<;§j;‘ '7t.70>+ (]2 +22)

20,{(5 7 W)(j £ p + P72 <ﬂ bl

x {1 % p/iN)[a +14] + (=1 F p/i)[x — ]

:< ilpl“)(uz—]ﬁ)<p p (2.9

TN+ (g + 22
X {1 £ wig)lio +1]1 +1 % wiglio — 11

(2.10)
Let us now consider the expression
— 1| Aj
+ + —p +1)}2/2 0N,
(o + €in)a{(i +u)(G —p + 1)} <]]3 ‘JJ3
(2.11)

From (2.9) and (2. 10), noting the relation

(iwo - Ipljo)(l‘z +2a2) + e(jopo - |P|i7t)(ﬂz ‘"](2))
= (epo— IpI){io(n2 +2a2) + eir(u2 —j}
— (j% +22)(jo — eir)ep (2.12)

and using the expression for
)\]0
(epo Ipl)“<ﬂ J]3

as obtained from (2. 2) and (2. 3), we get after
some simplifications the result

]°> — a7 + Wi —p + 1)}2/2

pou—1 >‘70>
]]3 T3

2.7
(2.8)
|
2(jg + €Na (G + WG —p + 1}/2 23" ;]13"
= (epo— IpD{io(u2 +22) + eir(u? —j3)
+p(g + A )}<]] # ;]03> 2¢e{(p — €ir)
x[jg + 1] + (» +ig)lx +icelh (2.13)

This expression will turn out to be quite useful
later on. An analogous expression can be written

pop + 1N
ith 0\ on the left.
wi i3 ]]3>

Up to this point we have treated the three cases
(P22 0) in a unified fashion. Now it becomes more
convenient to separate them in order to bring out
the particular features for each case and to com-
pare them eventually.

3. THE LIGHTLIKE CONTINUOUS-SPIN CASE
Let us now congider the case P2 =0, W2 =— 72,

Variation of j, and A (for u=j)

Let us define (considering for the present a fixed
value of T)

(P eT = (G + W16 — WG +5o)!
x (G =i + MG — N1 V2 A} (Po, )

always (2)! = I'(z + 1). 3.1
(We .will sometimes drop certain indices, when
there is no risk of confusion.) Now, putting

p =7 in (2.9) and (2.10), we get finally (corre-
sponding to p + 1 =j + 1 on the left)

0= [elpl/NGo+ eu)A”o + A{{” Ai’,J 1 3.2
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and
0 = (52 —jRI2Ipl /)Gy +ieNA],
+ Aij’o*]. Ai]o— 1]

The solution of (3.2) and (3.3) satisfying the
proper symmetry and (as will be shown below)
proper normalization conditions turns out to be
in terms of the modified Bessel functions of the
third kind,28

(3.3)

4} (Dorm) = K, (7/ID)EfDr 7). (3.4)

In an analogous manner, putting j, = j, one can
show that

Al (Do, 7) = 'K, (7/ID)F,(Po, 7). (3.5)
The same F; in (3.4) and (3.5) guarantees the
symmetry

. "

Als = A (3.6)

(o and B being possible values of j, and y). The

values for u= —j (or j, =—j) can be taken to
be consistent with the symmetry condition

jn
Asjo =Ar-jy- 3.7
We also have the symmetry
A% (3.8)

ao = (947, Al = (1A%,
the positive and the negative signs corresponding,
respectively,to integral and half-integral values
of j. These again will hold for general values of
pand j,.

The fundamental symmetry relation

Kfz) =K_[(2)

makes the foregoing results evident.

We will now extract successively the jandp,
dependence of F] (pg,7)in (3.4) and (3.5).

Variations of j

Using the matrix elements of Py.(=P1# iP2)on
the energy rotation states (Ref. 2, Appendix), we
obtain (for j; = j)

1/2 450
—2|p| plu ’\] )
P [(21)(21 + 1)] GlE®
1>°u
Zi—aPlE (3.9)
Now using the matrix elements of P_ on the
Lorentz basis! we obtain finally for p=j — 1,

Jo=J

2p0 1

A{ ;—1(.9 T = —i"‘;‘ (—2]_—1)(2]7‘4{_]7—1(? 0 T) (3.10)
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or,from (3.5),

200\, .. 1
Fj-l(Po, T) = (—ZTO>{(21 — 1)(2))} 1Fj(p0,7').(3 1

Hence

2\
Fj(poyT) (2.7) < I—T_0> F(po,T),say

(p, = elplfor zero mass).

(3.12)

Variation of |pl
We now utilize the basic relation (1.15):

260 = ~i[ PO, (N? — M?)]

— (NP + PN) =—iP°<2|P|a—|aP—| + 3) (3.13)

and the matrix elements of GO on the Lorentz
basis [Eq. (4.3) of Ref.1]. After some simplifica-
tions we obtain

2‘p| d ju
—— (73 +22) <|p|a_|;T+ 1) 4, (2o)

=jolli —io)Alt (b)) — G +igAll 1]
—aA[( + ALk, (po) — ALy (P — V).
(3.14)
Putting p = j, we obtain, finally,
21l g2+ + 1) 4l
p I l +(j ) ),jo(pO’T)
= Al (6o, + AL, (55, 7). (3.15)

Hence, using (3. 14), (3.12), (3. 15), and the well-
known relation2?

—2K‘:(Z) = Ky-—l(z) + Kud(z)r
we obtain
F(poym) = (3))! <—i2%0)-(j+1)C(T). (3.16)

The constant C(1) will be determined through
normalization conditions. (For P2 = 0,the
operator N°*M can also be used conveniently for
varying |pl.)

Descent from p = j
From (2.13) (with P2 = 0), (3.1), and the further
definition

AL (Do) ={( + WG —i1G +ie B (po,7),

(3.17)
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we obtain the quite simple relation Let us consider an integer n such that
. . ju=1 , i =7 —n =9,
(o + zeA)B{;fo + (p— ze)t)B)’\;‘ﬁ1 k=3—n =79
.. It can be shown that by applying (3. 18) » times
+ (B +7g)Br.cj, = 0. (3.18) we obtain

Z”> n! (G—2e))1(j +37) (i +iex— b —1)!

ji-n _ (_4\n
Bkjo =1 a=0ald! (j—iex —a)!(j +jo—b)1(jy +ier +a)!

(o +iex +a =B, ; o

witha+b=n=j—pn (3.19)
Hence, for u = j,,

AlL = [0 @HG + WG —p) G+ 1T — o) (4 + ) WG — iny 1}

. (o + € —b—1)1(jg + e +a—0)AY, .
X L GG 75 =BG =7 — DG F iex —OIj—ix — a)1(G, + e T T’

witha +b=j—p  (3.20)

T
where due to the factors (j + j, — b)!, (j —j, —a)!  other boundary values (p = —j orj, =% j) turn
in the denominator the summation is restricted to  out to be equivalent, as they should.

(G—io) = a,(G +ig) > b. (3.21) Final Expression

For u < j, we can utilize the symmetry condition As is shown in Appendix A, the normalization con-

(3.6) stant in (3. 16) is given by
Als = Al C(r) = 4/¥at. (3.22)
The solutions for A{;‘o obtained by starting from Thus finally, we can write (for p = j,)

G52 30Ty = 0305, BT /2 ) DG + WG~ WG+ S — i) G + )1 — in) /2
. 1)1._%%1 a'b'r(—;)“(]’o +.m'—£ — Dljq +ier+a — b.)K,-iix+,,-,,_(7/|1>_l) ’
oalbl(G+jp—0)1G—jo—a)!(j +iex —b)!(j —iex —a)!(j, + iex + a)!

J+jg=b, j—jo=za a+b=j—pu (3.23)

The formula (3.23) along with the symmetry rela- 4. THE TIMELIKE CASE
tion (3. 6) gives the complete solution. If we want
to consider a larger space including all possible
values of 7, we have to add a factor 7-15(r — 7') P2 —m2>0, W2=—m2ss +1).
for a set corresponding to 7’.

Let us now consider the case

To start with, we define (considering fixed

m and s)
|
pOul A _ |GG =G +5) G =i G + NG — )2 g
(i g ™) = [(ﬁ S~ )10+ 1(s — i (s + M1(s — ) !} Ao boimy 9 (4D

f

We have to consider two cases separately in using
(2. 9) and (2. 10).

Case 1,j = s: Putting p = s in (2.9) and (2. 10),
we obtain

{2e/m) (pgin +1pligAll; + (5 + Al

Arijy

~ (-4} =0, (4.2)
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(s2 _]%) {(25/”7) (pojo + |p|iA)A{;0'+ G _jO)A{;Oﬂ

— (G +igAl (4.3)

Ajo‘l} =0.

Case 2, < s: Putting pu =7 in (2.9) and (2. 10),
we obtain

{@e/m)(poin + IpligAl] + (s + Al

~ (s —inall; } =0, (4.4)
(72 —i3){(2e/m)(poio + IpINAT + (s —jo)
x Al (s +igAl] 4} =0. (4.5)

(Analogous equations can be written for j, = s or
jo = Jj,and the-symmetry p = j, is always present.)

A special situation occurs for the simplest case,
namely s = 0. The complete solution for zero
spin is briefly derived in Appendix B. Let us now
concentrate on the case s > 0.

For the sake of the definiteness, we will consider
for the present only the positive energy case

(€ = + 1). It is not difficult to see that,as in
Sec. 3,a change of sign of p0 is associated with
the substitution A — — A,

For s> 0 (j, = 0),it is convenient to introduce
the variable

x=e‘25, 0$xS1,

where

po = m cosht, Ipl=m sinh¢. (4.6)
Case 2,j < s30: Substituting in Egs. (4. 4) and
(4.5),in order to eliminate the factors x*1/2

which appear, we define

A{jlo(x) = #*1/ 200 NGI(), (a.7)
We obtain for FH
. . _ . — 3 +) . +
[Go + ) — (g — N FS + (s + zh)if§+)ij0
— —_— +) —_
X — x(s zx)s§_>ijo =0, (4.8)

(72 =[G +in) +x(ig— D +x(s ~jo)

x F&H iJFO l=o. .
EWI (s + ]O)GXJ'O‘I} 0 (4.9)
Similarly,
[Go +iN) —x(ig— ih)]sk?o + x(s + ix)if@ijo
—(s— iA)SF{:)ijo =0, (4.10)

(72 =3[l o +in) + 2o — N IF
s =38R, —#(s +jQFY_F=0. (4.11)

These equations correspond to well-known recur-
sion relations for hypergeometric functions or
polynomials,31 except for an additional change of
sign for the variations A 2> A x4,
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As will be seen more explicitly later on,the sym-
metry {(X,7,) = {(— A, —j,),and more particularly
the required limiting form (as m — 0, s — ©, such
that ms — 7) corresponding to the result of Sec.3,
namely

etrioK, ix(T/b o),
leads us to the solution32
A7} ()
= [x"1/2Ge*INF(— s — jg,— s — ir;—25;1 — %)
—x1/2Ge*iNF (—s + jo,—s + ix;—2s;1 — x)]
x eiig esefn(j, + iN}F] | (%) (4.12)

In the above formula, the hypergeometric pdly-
nomials are defined to be

F(=s¥Fjg,— s FiA;— 25;1 —x)

_ sio (s *(iozgs(;ns! ¥ iA), (- xp,

(4.13)

n=0

where
(@), =afa + 1)+ (a +n ~ 1) = T(a +n)/T(a).

We can express the solutions also in terms of
hypergeometric polynomials in x or in terms of
Jacobi polynomials. We will use these forms
later on, If will then also be seen that the sym-
metry conditions implied in (4.12) lead auto-
matically to solutions regular atx = 1 or |pl = 0.

Symmetry relations of the type (3. 6)—(3. 8) hold
again, and we could, in pavticular, have written an
exactly similar formula forjo =j by interchanging
uand j, in (4.12).

Variation of j: Using the matrix elements of P,
(as in Sec. 3) we obtain

(—i2lpl/m){(2 — D(@)(s +i)}2a]" = a7

Aj=1
4.14)

Hence (using the solution corresponding j, = j),
F. o) = (i@lpl/m)i@) (s +5)! &, )
= x(1/2)J'(1 -Vx)‘jei(n/z)j {4.15)
X (s +5) 1) 1Ty, 50). (4.16)

Variation of x: Using the matrix elements of G,
we obtain (as in Sec.3)

(73 + A2)(2po/m) {(Ip12/p )3, + 1]A7Y (x)
= (j3 + A2)x1/2[- 2x(1 — 2), + (1 +x)]A% (x)
=jol(s —i)G —iQAl 1 — (s +iQ(i +ig)
x ALY 1= (s + (G +inalt,

— (s —an) (G —inalt, 1.

(4.17)
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As a generalization of (3.16), one may assume a
solution of the form

S(M'S)(x) = x“(l . x)BC(m ,S)'
Substituting in (4. 17), cancelling some common
powers of x, and then comparing the coefficients
of (1 — x)» on both sides, we obtain

o = %,

g=s—1.

Thus, finally, forj < s

(4.18)

(4.19)

AL CHAKRABARTI

F(—s%jg,s Fir;— 25;1 — %)

=CeqyF(— s Fjg,— s Fir, 1 Fj FiA;%),(4.21)
where
Cyy= (s 2ig)Hs £iA)1/(25)1(x jy % i) 1.
(4.22)

Again in terms of the Jacobi polynomials we can
write

F(—s+j,,—s+ix{(—28);1—x)

A6 = Cp e’ Pre ™0 eseln(io + M)} (s +ig(s —io)!
1
X (s +J)1(2) XQ/DGD(L — x)s-33 - 14x
— xA/DGHINF(— s +jo,— s +ir;— 23, —x)].
(4. 20) where
The correspondence with Stroms formula33 is (1 +x)/(1 —x) = coth &. (4. 24)
evident. We may note the following useful alter-
native forms of the hypergeometric polynomials Using (4. 1), (4. 20), and (4. 23), we obtain (for
in (4. 20). We have jssande=1)
j
)‘70 C(m's) i/ 2)j+inj i ;
F o, m) = <m s; l]]a ,s> = Qa1 ¢ Vo csci{m(j, + ir)}
(2) s +5) (s +jg) (s — j)! 1/2
1/2)G1)(] — )5 -1
[(s—m; TIG Gl + WG — (s T —my1| *o20PL=T
_ . o (Gemirjtid) (1 + X L L Ggtirimin (1l + X
[x (1/2) Go* (1 — x)do stjo PAigt (1 x) xGo*iN/2(1 — x) JoPii;?o’ ot (]‘:;)] (4.25)
T
As compared to the formula (A19) of Ref. 14 Y N
[mcludmg the additional phase factor given follow- lim <m $3 0 73 m s>
ing (A19)], the rhs of (4.25) is of the form34
[t Som™ 2w Moy (.31

{2 + 1)(2s + 1)}~1/2 _Lm_)r_s)_em(s’fjo)d;‘]ig(x), (4.26) (2s)12Va [\ 773 113

dXo(1) = 4.27)

where i7e

Limit to Zero Mass Continuous Spin and
Normalization

Let us now consider the limiting form when

m — 0 and s = @, such that ms - 7. (4. 28)

The condition (4.28) implies

sx1/2 5 (1/2p ). (4.29)
From (4. 1), (4. 20), using (4. 21), (4. 22) taking the
term by term limit and noting that35

lim I'(z + o) = z°I(2), (4.30)

12] =00
we obtain, finally (in terms of the results of Sec.3,
with € = 1),

Hence the correct limiting behavior is obtained:

Cim.5) = VT /m(2s)!. (4.32)
Such a determination of C,, ., is not quite unam-
b1guous However, since our norma_hzatlon con-
dition is (for f1xed m,5,7,73)

© dplp2 /Nl Ok < B Mo
z;;lfo 2p0 ]Js Jia > Jis .7]3'>
1(1—x)2 Y HEINEITIRY)
=m?2 0 0
" Zfo 16x2 Jis .7.73> i3 ]]3>
=(j§ +A2)"15; oA — ). (4.33)

Comparing with the corresponding formula (A18)
of Ref. 14, and using (4. 26) (it is sufficient for our
present purpose to consider the simplest case
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with j =0), we obtain

(m2/4m}{CC*/[(25)!]2} =1, (4. 34)
Hence (4. 32) does indeed give the correct norma-
lization, with the constant phase factor chosen to
agree with our convention in Sec. 3.

Case 1,5 = s > 0: 1t is not difficult to verify
that, in this case,

A{;o(x) =C(m,s)ei("/2)j"i"j°(j +8)1(2)!
x ese{n(jo + i)} G+ /2(1 — x)-i-s-1

x [x~ W/ GoHN F(— j — jo,— j — ix; 251 — x)

]0 +ix;— 2731 — x)].

(4. 35)
The treatment of Eqgs.(4.2), (4. 3), and (4. 17) is evi-
dently symmetric with that of the previous case
and so presents no problem. There still remains
to determine a factor depending (apart from m and

s) only on j, which according to (4. 35) should turn
out to be

— x(]ol)\)/z F(_ ] +]0,_

gj — C(m,s)ei @/2)i( 5 + s)1(25)1. (4. 36)

Since now

— 8 s “'rjo < s,
and we have again to vary j (and not s), the situa-
tion here is not quite symmetric with respect to
the previous case. Using the matrix elements of
P_ and putting 1 = s, we obtain
(— i2lpl/m)A}; = (3 +22)71(2 +22)
[(j_jo)(j—jo" 1)(s ]o)A)\] +1+(] +]0)
X(j+ ]0—1)(8 +]0)A{J1_sl] +(52 — ]2)[(] +14A)
X(j+ix—1)(s +ATS + (7 —dn)

Afzf
x (j— i — 1)(s — iNA; )

(4.37)
|

F.r _
fa,b -
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Cancelling the common factors of x on comparing
the coefficients of (1 — x)0 on both sides, we
obtain

F;= (2 — 1(2))(s +)F;_,. (4.38)

This verifies (4. 36) and hence (4. 35). The constant
C (m.s)18,0f course, the same as in (4. 32), ensuring
cons1stency atj =s.

Hence finally, using the definition (4, 25), we obtain

ggg‘%(x) _ ezn(a—ﬂ)/ziFg{)?a ,

(4.39)

where « and 8 are possible values of j and s.

Descent from u=3j or s: From (2, 13) (with
€ = 1), defining

Ai"; =(s +p) (s — jo) (s + ) 1(j + u)!

x(j— o)ty +M)'BM , (4. 40)
we obtain
T | .
(Jo + M)BY; " +(u —zA)BM o1+ (i) B{f,,
= x1/2(jo +iM(p — u +jo)BY] . (4, 41)

This is a generalization of (3. 18),

For j < s and u > j,, the solution is found to be

TG — (G — )1+ j)!
[%‘ (__l)rxr/z <

where

o _
BM =
Jmpr

Z siiBil, s a>:| , (4.42)

a+b=(j—pu—7) (4. 42"

and

(jot A —b—1D1j,+ ix+ a—1b)

As usual the sum is restricted to nonnegative
values of (j +j, — b — 7). Similarly, for j = s,

Bﬁ‘ = "W (s — ) I(s — ) s + jo)!

Yo L
[E L:M( > f“Bjsmmz,)] (4.43)

wherea+ b=s5s—y—7.
J

FMo(x) =

ins

<m

l)\]o ,s>= 25;21

—ix—a—NHj+jo—b—nl{j, +ix+al"

exp[iim)j + in(j, — #)]{

(4, 427)

—
For p < j,, we can as before use the symmetry

Joa _ 478
A)\‘; - A)\a .
Final Expression

Putting together the foregoing results, we obtain,
forj <sand p > j, (e = 1),

(s + p)l(s — jo)Us +an)1 /2
(s —wtls +5p)1(s =T |
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X[ G = G+ G = )G + a1 — i) 1T]/2x G D/2(1 — x)-7-s-1 35

(=1)a(jo +ix— b — DI(jy +ix +a— b)1(—j, —
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Ve (— l)rxr/z

=0

ix—a+ b)!

-
2 (a'b'(]—zk——a—ﬁ'(]+]o——b—1’)!(]0 taa+al{j—j,—allj+ =01

% 1
= Jo— s T A—b)1

— xUgtir+a-b)/2F(— s + jo + a,— s +ix — b;— 25; 1 — %)},

The above expression, coupled with the sym-
metries

Tt () = G158 (0) = F) () (4. 45)
and ) .
Fhlo (x) = eUwD e Mo (), (4.46)

completes the solution.

5. THE SPACELIKE CASE
Let P2 = —m2 < 0 and W2 = m2K(X + 1), Let us
first consider the case

K=—%+in nreal

A, Application of a Deformation Formula

One solution is immediately obtained by using the
deformation formula of Ref, 2 (Sec. 5) and the
results of the Sec. 3 of this article.

Replacing m for thg moment by 7, we obtain,in the
notation of Ref. 2 (p2 = — 72), with
(5.1)

sind = 7/1pl, cosB =5,/ Ipl;

A R " )
JIJ)OP5 ]]:> = (2W|P|)‘1/ZZ‘§Dfm(O,— 8,— /2)

-i as2+in) pou Ad
d
><J Ipole™ (1B 1/ 1pg1) 1o e ]]:>

(5.2)

We have chosen to integrate over positive or nega-
tive p0 states accordingly as p, is positive or
negative. This displays directly the necessary
symmetry relations (p,, A = — po,— A). The ortho-
gonality and normalization properties are obtained
at once from the results of Appendix A of this
paper and those of Sec.5 of Ref. 2,

The integral in (5. 2) over the p9-dependent terms
can be carried out easily. Thus, for example, con-
sidering the case Po > 0 and using (3. 23) for the
terms in (5.2) with pu > j,, we can write the inte-
gral as

o o~
1= fo dpopo-(ﬁima/z) e-zPo/PoI{j6+i>\(T/p0),
(5.3)

jo=Jdo+ta—b, a+b=j—p.

Using the appropriate formula for Laplace trans-

>[x'(jo+ix+a-b)/2F(_ S—jo—a,—Ss—ix+b;—2s1—x)

a+tb=j—p—r. (4. 44)

—

forms,36 we obtain, in terms of Legendre functions,
for all a, b, and for

ﬂij0>—%7 (5-4)
1= (r/27)V/2(|p|)-GWT(j — j + % i(n — 1))
X T(J +3p + } iln + X)) PLIZ. . (iho/7).
(5.5)

The other values of u, j, can be treated using the
necessary symmetry relations [p= j,, (1, ]0) =
(= p,— jo)] for the last factor in (5. 2).

The integral I can also be expressed in terms of
hypergeometric functions by treating (5.3) as a
Mellin transform. The resulting formula is then
more complicated.

Analogous treatment can be given for K = —»n
(and even for the timelike case), introducing the
nonunitary representations discussed at the end
of Sec.5 of Ref, 2. Since, as has been noted in
Ref. 2, such nonunitarity representations come
in pairs, permitting the construction of scalar
products, suitable orthogonality and complete-
ness relations for the corresponding transforma-
tion coefficients can also be found. Due to this
fact, such nonunitarity representations might be
useful, We will not, however, discuss them in
this paper.

" B. Direct Method and Continuation of the Solution

for P2 >0

We can, of course, also solve directly the recursion
relations implied by our matrix elements for the
spacelike case. In order to bring out most clearly
the relation with solution for the timelike case
(and with the continuous-spin case as a limiting
form), let us adopt the following phase conven-
tions [writing in (1.8) and (1.9) (P2)1/2 = im]:

1)]1/2,
(5.6)
(& £ 2K Fix + 1)]2/2,

im

C]'Oiljo
(53 + »2)

[(K F oK + jg +

AN
WS G
Similarly we put

a 4= im[(K F p)(K £ p + 1)]¥/2 (5.6")

in the formulas of Sec. 2. 37 Note that C7°*/0 and
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a (Bare real. For the energy and momentum we
use the parametrization

po,=msinhl, |p|= (5.7

and x = ¢ 2t such that positive values of p° cor-

m cosh{

i
<m kP01 Mo, K>: (G+ w1 — pG + )G — Gl 1 + i — il
Jia 1Jig s
we obtain

K + p) UK — p) UK + o) 1K — jg) 1K +an) 1K —
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respond to 0 < x < 1 and the negative values to
1<xs< o,

The solutions of the recursion relations can now
be obtained in a fashion quite analogous to that for
the timelike case. Thus, for example, defining

] VAR p0,K),  (5.8)

i)l

Ai:‘}_o(x) = [(2m)1/2/im]e it FD(2) 1K + j)t x G WV/2(1 + x)KiLeiny esc[n(j, + ir)]

K — jo) (K — ia)!
Gepnyy E T UK + X!
— (= x)r Gerinr2 Gy + V1

and, putting y = 1/x = €2,
Af, () =
(K — jo) (K + iA)!

“Jp N1 Fi-k

x [(*__ ) Gigmin)/2

o &+ ) LK — !
(o — 21

The expression (5.9’) can be shown to be the
analytic continuation of (5,9) for ¥ > 1, 38 More-
over, since the arguments of the hypergeometric
functions are negative in (5. 9) and (5. 9’), integral
representations (with suitable chosen contours)
can be introduced, valid for all positive values of
x {or y).

The final constant factors in (5.9) and (5. 9’) have
been chosen, as in Sec.4, by consideving the limit-
ing forms that should give the zevo-mass con-
tinuous-spin solutions. (But we have included an
extra factor 1//2 to take account of presence of
both signs of the energy.)

In comparing the limiting forms, it should be noted
that our phase conventions correspond to the case
m— 0 (when x - 0), |[K| > ®

such that

inllz—)T/z l“pi’ (5.10)
A change im — — im in (5. 6) corresponds to a
change ix1/2 — — jx1/2 (or iy1/2 » — jy1/2} in
(5.9) [or (5.9')] and iK — — iK in (5.10). That is
(for 7 > 0) the two cases correspond to the choice
of negative and positive 7, respectively.

Let us note that the solutions [(5. 8)- (5. 10)] are
obtained from the corresponding solutions for

[(21,)1/2/me-in (j+1)(2j)g(K + j)! y(j*l)/2(1 + y)—K—j-leiﬂjo csc[ﬂ(jo —

i1 —jo — iA;— %)

F(—K +jo— K +ixl+jy+ ik;-x)}, pozland—x= ey

(5.9)

)]

—jor— K + ix1—jo + ing— 9) — (— ) Uemin V2

F(— K + jg, ——K—ih;1+j0—i)t;-y)] po <0 whenx=>1landy <1, (5.9)

P2 > 0,apart possibly from a constant factor
to be adjusted suitably, through the substitutions
[using the relation (4.21)]

x1/2 — x1/2 S > K = — 3 + 41,

(5.10")

m - im,

(The introduction of y for p, < 0 amounts finally
to a mere change of notation.)

Indeed it is not difficult to verify that considered
as a function of the above-mentioned parameters,
the solution obtained in Sec. 4 can be continued
analytically in the corresponding complex planes
(orienting suitably certain branch cuts) starting
from the initial real values (satisfying m > 0,
0<x<1,s 2 |jgl, |ul) to the final values indi-
cated in (5 10') Thls relation holds for general
@ values. We have to use the solutions (for

P2 > 0) with u = +j as a starting point.

Let us, however, point out in more detail the dif-
ferent possible recursion relations for u.

For ¢ = 1, defining

A%, = {& + )UK 7 jo) K + )1G + !

X (j % )15 + M 1}BY (5.11)
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we obtain from (2. 13) (and analogous equations
that can be constructed)

(g * z)\)B”J Lt (ps zJL)BM at (e *Jo)BmJ

={— 20225 £ i (p £ ) p % JO)BM . (5.12)

[The factor ei"/2x1/2 on the right changes to
e in/2x1/2 for the alternative phase convention
indicated following (5. 10), ]

For € =— 1, we have to substitute in (5.11) and
(5.12)

x=>xl=y and A— —2X (5.13)
in the coefficients, and the variation in A becomes
B)\_” [see (2.13)].

If we want to start with the limiting value y =

- J, it can be shown |starting with equations
analogous to (2, 13) with the (g + 1) amplitude on
the left] that, on defining

A= K — WK F ) 1K F )1~ )
x (3% jo) 5 * M BY (5.14)

|

A, CHAKRABARTI

one obtains (for ¢ = 1)
(£jo F zA)B"”l t-p B L+ ioVBl;,

=(—x)2(zj, F )= p 2 = p ¢ ;*0)15*M .
(5 15)

For ¢ =— 1, we have again to make the substitu-
tion (5.13).

The solution of (5. 12)(with the upper signs) is

obtained from (4. 42) through the substitution
x1/2 5 (— x)1/2, (5.16)

The solutions for the other cases considered in

(5.11) and (5. 14) follow from quite evident sym-
metries.

First expressing A’)\‘; (x) in terms of A/} ()

through solutions of (5 12) or (5. 15) and then
utilizing (5.9), (5.9’) (and analogous solutions for
A';]:’o) and finally (5. 8), we get the required results.

Thus, for example,for ¢ = 1 and y
from p = j, we obfain

> jy, starting

<m PO Mo, >_ — V2 [ + W& — G HE + T V2 [+ w)1G — w16 + )1 |2
ERKIE! imVT (K — WK +5) HE — i1 G —Jo)G + i1 — i)l
ip
X git Gemlg1/2GoD (1 + x)ik1 33 V=072
r=0 T!
By (—1)%(jo +ix —b —1)!
z{) a®i(j —ik —a—7NHJ +Jg~b -7 1{Jg +iX + @) [(J — Jg — @) 1(J + A — D)1
s ix +b . X
X (— x)~Ug*irra-b)y/2 (I; — :)\ +b)' (jo+ix+ta—b)l F—K—j,—a,—K—i
(K + j, + a)!
+5;1+ jO + i}t;—X)-— (x)(i'o*”‘”"b)/z (—:—7(2:—57‘( ]0 ix—a +b)‘
XF(—K +j, + a,— K +ix—b,1— jo — ix;— x) . (5.17)

(The solution for P2 > 0 can also be written in a
closely similar form.)

The other cases can be obtained from (5. 17) using
the symmetry relations (repeatedly pointed out)
which can be written symbolically as

and

(U»;jo) == (joy ) (U,jo) =(— V«;"‘jo)-

For p, < 0, we have to make the substitutions

x-y(=x1 and X — —],

We have not derived the normalization properties
of the solutions of this subsection by direct
calculation. This is one of the aspects in which

our results remain incomplete.
In order to study thoroughly the relation of the

f

two solutions given in subsections 5A and 5B, res-
pectively, we should examine exp11c1t1y, among
other things, the action, on the (B, i, jj3) basis of
5A, of N, WO, G0 [the latter two operators being
obtained by commuting P, with N-M and % (N2 —
M2), respectively]. This we will not attempt to do.
Let us note, however, that the deformation formula
[Ref. 2, Eq.(5.2)]

P=G+np with K=—4+in

corresponds to the matrix elements of Po with
[compare (5.6)]

P2 =— 12,
(5.18)

Clo*Yo==% i(jo + K + 1) 7/(j§ + A2),

CR™ =x (i K 7 1) 7/(j3 + 22).
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The conventions

P=G-—np or K=—3%-m0
correspond to a substitution (K + 1) » — K in

(5.18).

Such an alternative form (5. 18), which still con-
serves the Hermiticity of the matrix elements
jo = jo = 1 of the energy operator, is only pos-
sible for the case ReK = — 3.

A similar remark applies the matrix elements
of W and its reduced elements a .

C. K=—n

Let us now consider the case

K=—

co
3

W

1
n=3,1,

Now the values of j, 1, and j, are restricted to

> |pl, ljo|= n,all being integral or half-integral
accordmgly as n. Subject to this restriction, for
each value of u, j, can be positive or negative and
vice versa, giving four possible cases.

The case » =3 (which can be obtained in the limit
as 7 — 0 from the previous case) is exceptional.
Its contribution in the crossed-channel partial-
wave analysis, according to formalism of Ref, 5,
vanishes [due to a factor (2K + 1)]. For this
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case, W2 [=m2K(K + 1)] is negative, while, for

= 1, W2 is zero (which is, hence, also somewhat
special) and is positive for n = } onwards. We
will give only a somewhat brief and incomplete
discussion of these cases.

Let us examine what happens if we substitute
formally K = — » in the solution (5. 8), for p = j,
where A”. is given by (5.9) (for p, >0). The
first (second) term of (5.9) has a pole for j,

n (j, < — n) which cancels exactly the zero due
to the factor

[(K + p) K — p)UE + jo) 1K — jo)!]-1/%

and thus survives, the hypergeometrigrfunction
reducing to a polynomial, The other term no
longer contributes.

Starting with the case p; > 0, p > n, writing

[(& F o) IAK — p)t]1/2
=[=n—p+t D=n—p+2)-(—n7Fj)]/2
= gin/2 (u*jo)[(n +p—1)1/(n%j,—1)1]V2
(5.19)

for j > 0 and j,; < 0, respectively, let us write the
solution thus obtained from (5, 8) and (5. 9) for

@ =7 (including some modifications to be explain-
ed below) as

2¢ M WDIMo (15 1+ ix — D21 (G~ m) U (—n F iX)1(n +j— 1)1]1/2

n’ROj >.‘.j0
M3 (773

The upper or lower signs are to be used for j, =
n and j, < —n,respectively.)

In writing (5. 20) we have not only introduced an
extra factor V2 [since now only one term (5. 9) sur-
vives] but, what is more important, we have sup-
pressed afactor e*" 2 (which is, however, essen-
tial for K = —3 + in) in order to assure a certam
normalization property to be discussed below |see
(5.2) and (5. 24)]. It can be shown that (5. 20) (and
its analog for p, < 0) satisfies the required recur-
sion relations, provided we modify the matrix ele-

ments of P, by substituting for C
(5.6)],C}. " defined as (see Ref. 22)

[defined in

SEETIN N )
Mt oF ; :
C]0 ezC]D , CJo

A-ix

—iéC . (5.21)

The upper or lower signs are to be used for

Jo = n and j, < — n, respectively. (The matrix
elements can be given a more symmetrical
appearance by introducing corresponding modi-
fications of phase factors for the j, = j, + 1 and

>=\/‘r_rm[(j+jo)!(j—jo)!(j+ix)!(j—z'A)!(——n ) + o — D U—n £ jo)1]1/2

X x Grio¥inD/2(1 +x)7n-1F(n ¥ jo,m ¥ i1 F jo F ik — x).

(5. 20)

f

i~ u+ 1 matrix elements. But this is not essen-
tial.)

We will not write the general solution separately
for different possible values of it and j,. It is
sufficient to note that they are obtained by sup-
pressing a factor ¢ "2 (or ¢™"/2) in the surviv-
ing term of (5. 17) (on putting K = — #) and then
applying the usual symmetry properties if neces-
sary.

As regards the normalization property of the
solutions thus obtained, it is convenient to start
by considering one of the simplest cases, say

j=n=yp=j,. (5.22)

1t is quite easy to verify from (5. 20) that [consis-

tent with Eq. (5. 10) of Ref. 2]
Ip! [pgln [po || An
f a1 bl [ZEI n73lnj3 €><n12 n]>
=) (5. 23)

T (n2 +2a2)
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|pg|n An byl
e—‘lf dA< njg ln]3 njsln](; >
_20(pg—by) 2008 — )

(5.24)

[pl "~ m2? cosh2t
(The left-hand side is symmetric in #X and we
have adopted the convention of integrating over
the positive values.)

Evidently this property cannot be obtained without
such a modification as (5. 21).

In view of certain ambiguities, it would have been-
desirable to derive the normalization properties
for general j values by direct calculation. Unfor-
tunately, we have been unable to find a suitably
simple technique permitting this.

One can, of course, avoid {for the case K = — n)
gamma functions with negative integer arguments
from the beginning by modifying (5. 8) suitably

for the different cases involved. Thus, for example,
for u, j, =7, one can start with the def1n1t1on
(possible also of course, for K = — 3 +in)

((G+w)T =T =) (G =) (F + M

pOu Ayo>
Jig 174

_ [(#—K— 1)!1(jo — K — 1)!(—iA—K—1)!]1/2 N
- (L+K)!(j, tK)(—ix +K)! Aj .

ix)1L/2

(5. 25)

The solutions obtained present, in their turn,
other problems to start with. It should also be
noted that for K = — n, the limiting values + 7 of
por j, can also be used as starting points of
corresponding recursion relations. We will not
enter, in this paper, into a discussion of all these
different aspects.

6. DIAGONALIZATION OF THE SUBGROUPS
SU(1, 1) AND E(2)

So far we have always considered bases which
diagonalize the rotation or SU/(2) subgroup of the
HLG. Let us now discuss certain aspects of the
bases which diagonalize the subgroups SU(1, 1)
and E(2), respectively. We will not attempt a
thorough study of these cases, but only briefly
indicate certain important features.

We can, of course, obtain the required results for
the Poincaré group by combining-our foregoing
results with the transformation coefficients re-
lating the three bases

Mo> Mo Mo
Jig /? '>’ and p13>

Kj,
which diagonalize the subgroups SU(2), SU(1, 1),
and E(2), respectively.

(6.1)

A. CHAKRABARTI

These transformation coefficients (involving only
the HLG and not the Poincaré group) have been
studied from various points of view.15,16,18
They can also be obtained in fairly convenient
forms (and except for a factor) as particular
cases of our preceding results for the lightlike
and spacelike cases, respectively. (See the final
remarks of this section.) This, however, is not
the most direct way.

Another point of view is to obtain factorized ex-
pressions just as in (1. 5) by diagonalizing the
SU(1, 1) subgroup for spacelike momenta and the
E(2) subgroup for lightlike momenta, respectively.
The finite Lorentz transformation matrix (cor-
responding to each of the bases) appearing as a
factor has been studied by several authors.19,39,40

Exactly as for the timelike case, we obtain for
the spacelike one (starting for simplicity with
the original 3-momentum P paraliel to the z
axis when M, and the helicity operator have the
same eigenvalue)

<P# Mo> <P@ﬂ'h > An p)],

where
A(p)' p = (0; 07 0’ m)Ep(o) 3

(6.2)

and :D,}}’,}’K: [A()] is the finite Lorentz transforma-
tion matrix corresponding to the pure Lorentz
transformation A(p) (parallel to the z axis) acting

on the basis I Ky > diagonalizing the SU(1, 1)

subgroup. [It is further being supposed that the
Spacelike vepresentation satisfies (1.15) as in
Ref.2.]

For the lightlike case, starting with an arbitrary
direction of momentum, we need essentially eval-
uate the matrix elements of a finite rotation which
brings p in the z direction such that finally

p = (w,0,0,w), say. (6.3)
The effect of a further Lorentz transformation
parallel to the z axis, reducing p to

Po= (1,0,0,1) (6.4)
is trivial (multiplication by a factor w~1). The
remaining unknown factor can thus be taken to
be(withp = 7for W2 = — 72 P2 =0 andp(o)— 1)

<P(0)“l)‘10 (6. 5)

This factor and the corresponding one in (6. 2)
may be determined, except for a phase factor,
through suitable normalization conditions.

A systematic-study of these bases, using tech-
niques similar to those used in this paper, may
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be attempted by first obtaining the matrix ele-
ments of P3 and (P9 — P3) acting on the

Mo
Kjg
To evaluate the matrix elements of P3, one can
start with the relations [compare with Eqgs. (2.7)
and (2. 11) of Ref. 1, replacing p2 by P2}, valid
for the general case

{Na[Ns,ps]} = - P3,

Ajo :
> and l.pj3 > bases, respectively.

{P3 [P3, (N2 — M2)J} = — 2[(P3)2 + P2], (6.6)
{P3,[P3, N-M]} =0.
The corr;esponding relations for (P% — P3) are
[N3, (PO —P3)] =4(PO —P3),
{po —p3), [P0 —P3), (N2 —M2)]} = — 2P0 — P3)2,
{PO —P3),[(PO —P3),N*M]} = 0. (6.7)

In this article we will not enter into the details of
these aspects. Let us only briefly mention that a
preliminary study indicates that the matrix ele-

’ Mo

ments of P3 on the > basis can be given a

form faxrly similar (m terms of K) to those of PO,
on the ‘ ]°> basis, and that those of (P¢ — P3)

on the > basis are simple, being obtained by

[
replacing the Jj-dependent factors of the matrix
elements of PO just by p (the same factor p
appearing in all the four matrix elements). Such
results are consistent with the solutions for the

“P gy transformation coefficients” [which appear

in t6 2) and (6. 5) quite analogous to that appear-
ing in Appendix C], namely a phase factor multi-
plied by a constant factor. This phase factor may,
however, be modified, depending on the precise
phase conventions adopted for the matrix elements.
It is needless to emphasize that such results
depend on the assumed formal validity of certain
manipulations. Several special features arise,
particularly for the spacelike case.

Let us finally come back to the problem of trans-
formations among the bases. We would like to
indicate the precise consequences of our phase
conventions [in subsections 5B and 5C] for the
spacelike case on the representations of the little
group SU(1, 1) corresponding to (6.2) with

P =(0,0,0,m). It is easily seen that

bk "]oK ~ (27 + 1)1/2 Kp(o)fa Mok s
Gl o Rl
is proportional to

<"j.o 4.7'0>.
Kj,lii4
[We will not attempt to determine, in this paper,

the exact factor of proportionality. It does not
affect the results (6. 10) and (6. 11).]

(6.9)
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By considering the matrix elements of (N,  iN,)
on the bra and ket, respectively, it can be shown
(most easily on considering the states with j; =

- ¢ 7) by using the solutions obtained in subsections

5B and 5C that our convéntions correspond to the
results (apart from the evident one for M,)

Mo\ - : . .
KJ EAR > =t [(KFj)K %], + D]V

for K=—1%
and

+1n, (6.10)

LA "70> =7 iljy FK)(j; £ K £ 1)]1/2

for K = —n. (6.11)
Thus, in both cases, our conventions lead to purely
imaginary Hermitic matrix elements.

Similarly from our corresponding results for
the lightlike case, it can be shown that our con-
ventions correspond to the results

Mo

O Al (6. 12)

. A
T iIN ’ 0N =_p.
+ ¥ iNy) p13> p

Certain other more complicated related results
can also be obtained from our solutions. In this
article, however, we limit our discussion to the
preceeding brief remarks.

APPENDIX A: NORMALIZATION OF THE TRANS-
FORMATION COEFFICIENTS (P2 =0, W2 = — 72)

The normalization of the states are defined to be
(considering a space corresponding to a fixed
value of 7)

7‘70 }‘70 . o
T j'is = (4§ + 22)71 8N — \)bjg5, 8513 6545,
and
po“’ = o! ‘ Y i LT
].73 l >—2P0 6(po _po)oﬂlﬁaj']ﬁ.‘lg]:;
(A2)

Inserting the completeness relation corresponding
to (A2) in (A1), we obtain

2 Jrale lp'

)}_’jol.b"u /17?#‘
s 1Jiz / \Ji3 113

= (j2 2)-1 r_ .,

(73 + X2)71 60 —N)oj 5 (A3)
The general expression obtained by substituting
(3.23) in (A3) is complicated. But, since C(71) is
independent of j, it is Sufficient for our puvpose
to take the simplest case,namely,j =0.

Let us, however, write a somewhat more general
expression by putting {for arbitrary j) 3§ =3 = j.
Let us also consider in particular the case € = +1,
since the other case can be treated exactly the
same.
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We obtain the condition

{G+ix—D1G —ix — D1} — )
=z J b “(_> *7 cmein

21)0
;
e ) et )
CHHG + w1 —wi}-1. (A4)
Now
o po T\ 20+D T T
W) ()
J°°2<2po> VY AL VS

_r_a)f dr 2 @DEK,, (0) K, e (). (A5)

2 (2
Via the formulas41
K, )W) K, _;yx)= ?.fo K (nen (2x cosh 1)

x cosh{2u +i{x — N} ¢] dt
and

S Ko (2% coship2i1 dx = 2€252 (2 cosh 1)°27
X T <j +i ()‘ ;X)> F<j~i @ +a) ;7")>, (A7)

the rhs of (A5) becomes finally

221(2;#2) T (j ¥ 1(7‘_7"> T <j — . ; )\,)>

cosh(2ut
% f"odt (I“L)
0

(A6)

cos(A — ')

(cosht)2J

+ (a part antisymmetric in p.)]. (A8)

Evidently, we can neglect the part antisymmetric
in 4 in view of the summation over u in {(A4).
Moreover,

(23! < cosh(2ut)

1a9)! __CoSReM)  _ (cosh 1)27
2@ =5 (G + Wl —w!

(A9)

Thus, finally, (A4) reduces to
= C(7)C*(r) 5 72

L+ i +a7)/2)0(F —ila +1')/2)
X L(7 + T —dA)

(A" — )

X

J. cos (1 =) tat (A10)

C(T)C*(7) 5 T2 76(A" — 1), (A11)

Hence, except for a constant (arbitrary) phase
factor,
Cc(7) = 4/Vr 7. (A12)

Having once determined C(7) as above, we can
indeed reverse the procedure and utilize (A3) to

A, CHAKRABARTI

assert the general result for the sum and integral
of the special functions involved.

We would like at this stage to draw attention to
the consequences of the fact that the represen-
tations (4, A) and (—j,, — 1) of HLG are equiva-
lent [compare Ref. 1, Egs. (3. 31), (3. 32)].

For j =0 = u = j,, using the symmetry

K, (x) =K ;) (x),

we can also obtain finally 6(A» + A’) on the rhs of
(A11). This ambiguity corresponds to the equi-
valence of the representations (0, 1) and (0, — A).

For j = 3, if we fix j, = + } (say), then the above
feature is naturally no longer present. But it
appears (as may easily be verified) when we
test the orthogonality of the states

I 1 P 1
Jo=%t3 and jy =73,

respectively.

We will exclude such ambiguities by fixing the
vanges of j, and X as in (Al).

Our normalization must be consistent with the
completeness relation

= o 0 9 G

(A13)
FNIA 713

A simple check is provided by inserting (A13) in
(A2) for the case j = 0.

Using the value (A12), we obtain finally the con-
sistency condition

I rrem <o) % ()

=3 7 ped(po —P)- (A14)
The lhs is

1 ;o . T T

2/ A sinh (M) Ky (%> K, (%) . (A15)
Using42
%f: K, (@K, (b) cosh[(1 — ¢)x]dx

= Ky[(@2 + b2 — 2ab cosg)1/2], (A16)

we obtain (putting a = 7/pg, b = 7/0§’

1 Jo X sinh(m)K, (@)K (b) dx

= —3lim aa— Ko{(a? + b2 — 2ab cos¢)l/2]
¢-0
= — 3 lim Kp[(a2 + b2 — 2ab cos ¢)1/2]
%0
ab sing

(@2 + b2 — 2ab cos @)1/2
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(ab)r/2 lim (ab)1/2(p
2 @290 (g _ b)2 + gby?

(using 43 the explicit expression for K;)

= 3 andla —b) = 3 wpy 6(bg —py)- (A17)

This verifies (A14).

Again we can assert the corresponding general
formula (arbitrary j) on the basis of our group
theoretical results.

APPENDIX B: SOLUTION FOR P2 = m2, W2 =0
In this case only Eq. (4.2) need be considered, with

<p00 1)\
Jis 1Ji3

= [E) =1 +a) 1 — i) 11247 (py)

(B1)
(since s =0 = u =jg).

&In this case (4.2) can be directly obtained from
2.2).]

For j, =0, (4. 2) corresponds to a recurrence
relation for the Legendre functions44 and we
obtain ‘
; -j-1/2

Al (py ~ P12 (ebg/m). (B2)
Using successively the matrix elements of
(P; ¥ iP,) and G, (as in Sec. 3) and the relevant
recursion relations of the Legendre functions,45
we obtain the respective factors

(eien/Zj)(j +ix)1(F —in)! 1_1/2.

and |p (B3)
The final normalization constant (2/m)1/2 is
obtained at once on using a property of the Legen-

dre function proved by Joos [Ref. 7, Eq. (4. 15)].
Finally we obtain

(mho|}. m'y = <72 [(J‘ +iA)!(j—iA)!] /2
31713

m () (=)t
2m\ /2 ePo
()" (),

This formula coincides (except for a factor A™1
arising from a different normalization for the
Lorentz basis) with the one found by Joos in a
different fashion [Ref. 7, Eq. (4. 18)].

APPENDIX C

In this appendix we consider the transformation
coefficient to the Lorentz basis corresponding to
the rest frame of the timelike momenta, namely,
0,s3 |Ady

[m’s]|383>, (Cl)
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This is, of course, a very simple particular case
of the solution found in Sec.4. We study it separ-
ately to show clearly how our methods permit a
simple study of the factorized structure (1.5).

It can be shown easily that it is independent of

S5 and we will write it briefly as

Mo - (c2)
Using the matrix elements of PO, we obtain
mNjo) = [m/2(j§ + A2)]

x [Ajo+1 tA; 1 T Byt Byl (c3)
where

Ajper = S Fig)S £ + 1N £ 1)
and

Bys; = (S (S Faix + 1)\ 4jg),. (c4)

Similarly, using the matrix element of W9, we
obtain

0 =ir{4; 1 —Ajo_l} —joiB,si —B,-i}. (C5)
Finally, using the matrix elements of G9, we obtain
3m (Mo)(o) = {(2j0 + 1)A]~0+1 - (27'0 - 1)Aj0-1}

—{@@ix —1)B,.; — (2ix + 1)B,_;}. (C6)

Combining (C3)~(C6), we obtain

(S —3o)S +ig + DX jo + Dy +<{2 Jp]
=(S —jo +1)(S +j0)[<>\ jO)(O) + jO — ].)(0)]

(cn
and

(S +aa)S —ix + D[ +ijy) ) — Mo 0]
=—(S+ix + 1S —iM)[(Nghgy — (X — gyl

(c8)
The boundary condition
ligl<§
gives at once
Moy = XS ™. (C9)

Also, from (C3), (C7), and (C8), one finally obtains
<A, s>(0) = <A + i, S)(O).
Hence the solution satisfying the boundary and
suitable normalization condition can be taken to
be, say,
<)\-7.0>(0) :a(m.s)eiﬂjoa (CIO)

where @ (,, ;) may depend only on m and s.
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With the aim of extending the Sonine polynomial expansion method to the region of relativistic Max-

wellian distribution functions,a new set of polynomials has been introduced in terms of their ortho-
gonality equation. Their coefficients have been derived and tabulated as functions of the temperature

for several lowest orders.

1. INTRODUCTION

The Sonine-Laguerre polynomials S@)(x) are
popular in plasma physics as well as in the mole-
cular theory of gases and liquids because of their
orthogonality condition

Jo x0T SOSEXx) dx < 5,,,,. (1)

The advantage provided by this orthogonality con-
dition becomes apparent if one makes the substi-
tution x = mv2/2kT, where mw?/2 is the kinetic
energy of a plasma particle or a molecule of the
gas or the liquid and %T is the temperature of the
system in units of energy. Then the weight func-
tion of the orthogonality equation contains what
essentially is a Maxwellian distribution function
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which in most cases serves as the zeroth-order
distribution function f,(v). The perturbed distri-
bution function may be written, for example, in

the form f,(v)[1 + ¢(v)], and we expand the func-
tion ¢(v) as 25b,5 @ (mv2/2kT). We then linearize
the equation involving the distribution function, and
the result is an expression of the form
fo(v)Z)b,ST(“)(mvz/Zk T) = a known expression, (2)
The set of expansion coefficients b, will be ob-
tained by multiplying (2) with s@(mw2/2kT) and
then integrating it.?

In recent years, however, increasing attention

has been given to high-temperature plasmas
owing to their importance in astrophysics as

well as in controlled thermonuclear research.
When there is a significant number of electrons
with kinetic energies comparable to the rest
energy, a relativistic description becomes neces-
sary for the electrons. In an unperturbed sys-
tem, a relativistic Maxwellian distribution function
must be used for fo(v), and hence the expansion
method can no longer be carried out in terms of
the Sonine polynomials. The purpose of this paper
is to introduce a new set of polynomials which will
play, for relativistic plasmas, the role played by
the Sonine polynomials for a nonrelativistic Max-
wellian distribution. In Sec.II, the problem will

be more clearly defined and the expression for the
polynomials will be derived. In Sec.III, we will
show by a direct method that our new polynomials
approach the form of the Sonine polynomials in the
low-temperature limit. Finally,in Sec.IV,a
numerical table of the coefficients will be given
for several of the lowest orders of the polynomials.

0. THE NEW POLYNOMIALS

Let X @)(x) be the desired polynomials; our first
step is to establish an orthogonality condition
which should be satisfied by them. We know that
the relativistic Maxwellian distribution function
is of the form exp{mc2[l — (1 — v2/c2)~1/2)/kT},
where mc? is the rest energy of the electron.
Comparing this form with (1), we can write the
orthogonality condition for the X as follows:

[ty 1—(1—x)?
Jo x° exp ;

X X@(x)XD(x) dx = N5 ®3)

mm’?

where the dimensionless parameter ! is essen-
tially the temperature of the system measured in
units of the electron rest energy and N is a
normalization constant. It should be remembered
at this point that the polynomials X ()(x) will
eventually depend on {. Note also that « is non-
negative, while /7, being the order of the polynomial,
must be a positive integer on zero.

We will start by writing

X@(x) = ngda, m,p)x’, (4)
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where

cla,m,m) = 0.

(5

We substitute (4) into (3) and, changing variables,
obtain

o x m m’
2 fo (1 +x)-3e /:Z_;O p;)oc(n,in,p)r(ﬂ, m',p’)
X [1— (1 +x)2]"" P ax = N (6)

For convenience, we define a set of functions g by

mon!*

b
g =2 fao(l + x)‘3e_"/t[1 — (1 +x)"2] dx.
0 7
The g, (¢) functions can be evaluated by a binomial
expansion and a change of variables. We obtain

- 2 & 1D)Ey,s(1/8)
&0 =2 T0+ ) 2 Grrg g — gy

(8

where the E's are the exponential integral func-
tions defined by?2

E (z) = ]:O y e ay, (9)

Hereafter, the argument of the g functions will be
dropped for convenience, but it is understood to be
the parameter ¢.

With the use of (7), the orthogonality condition (6)
is simplified into the form

n:O,l,z’...'

5

m’
; Z}c(a,m,p)c(a,m',p')gwrp, =N,$‘a)6mm; (10)
=0p’=0

from which we immediately obtain, by setting m =
m' =0,

c(a,O, 0) = (l/ga)l/Z_ (11)
The higher-order coefficients can be obtained
in an ascending order from (10) by the following
procedure. Suppose now that we want the m + 1
coefficients c(a, m,p), where p = 0,1,...,m,
knowing all the lower-order coefficients. We then
set i = in in (10) and vary m’ from 0 to :». The
m + 1 equations thus generated are

m  m!
pg%, p_;oc(a,m)p)c(av ’n,,p’)ga+p+p/ = 0,

m' =0,1,---,m—1 (12)
and

m m
pZ=2: p?cc(a,m,p)c(a,m,p’)gm*pw, = N’f“'). (13)

We simplify (12) as follows. First, we consider
the equation with m’ = 0, which, by (5), can be
reduced to

143

pzc(a,m’p)ga+p = 0. (14)
=0

Next, (14) is multiplied by c(a, 1, 0) and substracted
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from the second (' = 1) of (12). The result is

m
pl?:)c(a’m’p)ga*p*l =0. (15)

By repeating this procedure, the set of m equa-
tions (12) are simplified now to read

m
p@oc(a’m’p)ngmr =0, m'=0,1,---,m—1

(16)

This set of equations is first solved for the m
ratios defined by

r’(a,m,p) = c(a,m,p)/c(a, m,m),

p=0,1,-+,m—1 am)
by the standard determinantal method. For this
purpose, we define an m X m symmetric matrix

M whose ij component is given by

M = g Gi=1,2,0,m (18)
Furthermore, we defme two m-component column
matrices C( and G whose pth components
are given by

C;”‘)zc’(a,m,p—-l) (19)
and

Gp(m) = Gy pemeis (20)
respectively, so that (16) may now be written in a
matrix form as

MM C =— g, (1)
This matrix equation can be solved by the stan-
dard method if detM( = 0. Let M ("]0 be the cofac-
tor of the determinant of the matrix M corre-
sponding to the ij component. Then the ij compon-
ent of the inverse matrix of M@ is M (';‘) /detMom,
Using this inverse matrix on (21) and equating the
(p + 1)st components of both sides, we obtain

c'(aym,p) = I = — (detM™)-1

x z, i M. (22)
In the last line above, we used the relation

G = Ml (23)

Now it should be noted that the summation on the
last line of (22) represents the determinant of an
m X m matrlx formed by replacing the (p + 1)st
column of MC )by the (m + 1)st column of M+
with its bottom element removed. If we move this
inserted column to the right-hand end, the deter-
minant will change its sign m —p — 1 times and
the resultant matrix will be equal to the minor of
detM™ Y corresponding to the (p + 1, m + 1)
element. Remembering the relation between the
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cofactor and the minor of a determinant. we can
write (22) as

FmD, | /detMt™,

c'(a,m,p) = (24)

Our final step is to divide (13) by [c(a, m,m)]2
combine it with (24):

N(a) [c(a,m,m)]2

H

m
’ ’ ’ +1
Z—}C (a’m’p) Ec (a’msp )Mp(lrfl 1))*1

(my _ *1

(detM (™) -1 zc (@m,p) z LA
(m*1)

Mpr+1 p+1

N

= detM™*? /getM ™. (25)

For convenience, we will define

detM® = 1, (26)

Then we can combine (24) and (25) and write in

a simple form

cla,m,p) = M;f'f}n),l N ,fla)/(detM dgetm /2
(27)

form =0,1,2,---andp = 0,1, -

IIl. ASYMPTOTIC BEHAVIOR

As mentioned earlier, the parameter ¢ will even-
tually play the role of kT/mc2. Thus the non-
relativistic limit of our formalism will be reached
by making ¢ approach zero. In this section, this
limit will be considered analytically. For con-
venience of presentation, however, we will assume
a to be an integer and write it as n,

First, we will study the nonrelativistic limit of the
g functions. As can be seen in (7), only the region
of small x contributes to the integral if ! is nearly
zero. Then the remaining factors in the integrand
may be expanded in power series of x,and the
integration can be performed term by term, yield-
ing

noo= (—1)P"Qp +m+ 2) 1™
) = 2n!
Lime, () = 20! 20 20 ey imp T 91
(28)

We will now use the lemma

o P@p +m+2)1 (0ifn>m .

Z;IJ'("—P)'(ZP +2)! Ti—2)%ifn = 29
so that

limg (1) = (28" 'n! (30)

t—0

The above lemma may be proved by taking the
mth derivative of x”*2(1 — x2)», This is done first
by the binomial expansion of the second factor.
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Next we use the formula for taking the derivative
of a product. After equating the two results, we
set x = 1 to obtain (29).

We consider next the nonrelativistic limit of

det M, By combining 818) and (30), we see that
the ij element of det M will be (26)* "7 1(n +

7 + 7 — 2)!in this limit. This determinant can
easily be evaluated by the standard method. Fi{st,
we factor out (2)""* from the kth row and (2£)*
from the kth column (¢ =1,2,--- m). The ij
element of the remaining determinant is (n + 1 +
j— 2)!, and by repeating the well-known procedure
of extracting a factor from a row and subtracting

it from another row we can make all the elements
of the determinant vanish below the principal diago-
nal. Thus we obtain

lim detM ™ = 2™ i [g16r + )11 D)
t—0 =

Ii‘i{xa_lll)y, we calculate the nonrelativistic limit of
M, "1, which, by definition, is (—1)" times the
determinant of the matrix made from M py
deleting the (p + 1)st row and the (m + 1)st
column. To evaluate this determinant, we add to

it at the bottom ? {Bw which was originally

deleted from M™ " and onto the extreme right-
hand side a column whose elements are all zero
except that the bottom element is 1. The value of
the determinant remains unchanged by such addi-
tions. We next interchange rows (m — p) times

so that the added row will appear at the (p + 1)st
place. We then repeat the same simplifying pro-
cedure described above. Paying special attention
to see how the last column changes as subtractions
of rows are repeated, we eventually obtain

(5 (m*1)
Mp*l.m'l

(_ l)m'P(Zt)mn+m2+m-Pgl§‘0 [q!(n + q)!]
(m—p)1ptin +p)!

‘Using the nonrelativistic limits (31) and (32), we
obtain

lim erl")(x)

t—0

m
X

lim
t—0

(32)

) ()
m!@m +m)!N_ )1/2
(Zt)rﬂl

" P(x/2ty
o m = p)pl + )1

It should be observed that the above summation is
of the form of M(— m,n + 1,x/2t), where M is the
hypergeometric function.2 This function is also
related to the Sonine polynomials by

M—m,n+ 1, x)=[m!n!/(n + m)!]S”(‘")(x). (34)

s2)

(35)

(33)

Hence,
mIN®
m

n)
(n +m)1(2t)""

m

lim X P(x) = (—1)™ (
t—o
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This asymptotic form is also true for nonintegral
values of » except that the factorials must be
replaced by gamma functions with appropriate
arguments.

Before leaving this section, let us consider the
other asymptotic region of { becoming infinitely
large, though a plasma with a temperature much
greater than the electron rest energy is not a
practical problem at present.

When ¢ is infinitely large, the exponential factor
of (3) may be deleted and the weight function of
the orthogonality equation becomes simply x°.
Hence, in this limit, our polynomials will take the
form of G, (a +1,a + 1,x), where the Jacobi poly-
nomials G (p,q,x) are,aside from a normaliza-
tion factor. given by?2

5 oe(7)

m’=0

T(p +m +m")x™

T(g +m’) (36)

IV. TABULATION

Since the nonrelativistic limit is more of interest
to us than the extremely x(“slativistic limit, the
normalization constant N, will be determined so
that the deviation of the er;l)(x) from the Sonine
polynomials will be shown most clearly as ¢ in-

creases from zero. We choose

N = m1@)* @ +m +1) (37)
in view of (33) and (35), so that
lim c¢(a, m, m) = 1. (38)

t—>0

Further, we note in (35) that the argument of the
Sonine polynomials is not x but x/2f in the non-
relativistic limit. For this reason, we will re-
write (4) as

(a) _ m ; Z _X_ b4
X0 = 20 "cle,m,m) 3 ela,m, ) (Zt) ., (9
where

&a,m,p) = @1 "¢ (a, m, p). (40)
Obviously, c(a,m,m) = 1. Hence, for the purpose
of characterizing the polynomials it will be suf-
ficient to tabulate c(a,m,m) and &(a, m,p), where
p=0,1,--+,m—1.

In the actual evaluation of these coefficients as
functions of ¢, the first step is to integrate (7)
n%nerically to obtain the g functions. The

&, ~ with smaller b are found to approach their
asymptotic form (30) much faster th%n those with
larger b. At ¢ = 0.01, the ratio of gb( to its non-
relativistic limit is 0. 97 for & = 0, but it is 0.18
for b = 10. At ¢ = 0.001, it is 0.997 for b = 0,
while it is still as low as 0. 82 for b = 10.



1844

K. NISHIMURA

TABLE 1. Coefficients of the derived polynomials as defined in the text. The number at the right in parentheses indicates the
power of ten by which that entry should be multiplied.

t c(0,0,0) ¢(0,1,0) #(0,1,0) c(0,2,2) &0,2,1) 2(0,2,0) ¢(0,3,3) ¢&(0,3,2) &0,3,1) &0,3,0)
0 1.00 1.00 —1.00 1.00 —4.00 2,00 1.00 —9.00 1.80(1) —6.00
0.001 1.00 1.01 —9.94(-1) 1.03 -3.95 1.96 1.1 —8.8 1.7(1) —5.7
0.002 1.00 1.02 —9.88(—1) 1.06 -3.90 1,92 1.1 —8.7 1.7(1) —5.5

0. 005 1.01 1.05 —9.71(-1) 1.15 -3.78 1.81 1.3 —8.3 1.5(1) —4.9
0.01 1.01 1.10 —9.44(-1) 1.30 ~3.58 1.65 1.6 -T1.7 1.3(1) —4.0
0.02 1.03 1.21 —8.96(—1) 1.63 —3.25 1.39 2.5 —6.17 1.1(1) -2.9
0.05 1.07 1.53 —T7.80(—1) 2.83 ~2.58 9.14(-1) 6.5 5.0 6.0 -1.3
0.1 1.13 2.07 —6.47(—1) 5.54 —1.95 5.44(—1) 1.9(1) —3.6 3.1 —5,1(-1)
0.2 1.24 3.23 —4,90(—1) 1.38(1) -1,34 2.67(—1) 8.2(1) —2.3 1.3 —1.5(-1)
0.5 1.50 7.25 —2.92(-1) 6.54(1) —17.08(—1) 7.87(—2) 8.6(2) -1.2 3.5(-1) 2.1(-2)
1 1.83 1.55(1) —1.79(-1) 2.61(2) —4,05(—1) 2,64(—2) 6.5(3) —6.4(-1) 1.1(=1) —-3.7(-3)
t c(3,0,0) ¢c(3,1,1) (1,0 c(z,2,2)  &(,2,1) £(z,2,00  ¢(5,3,3) (3,3,2) ¢G,3,1)  2(,3,0
0 1.00 1.00 —1.50 1.00 —5.00 3.175 1.00 —1.05(1) 2.63(1) —1.31(1)
0.001 1.00 1.01 —1.49 1.03 —4,93 3.66 1.1 —-1,0(1) 2.5(1) —1.3(1)
0.002 1.01 1.03 —1.48 1.07 —4,87 3.517 1.1 —1.0(1) 2.5(1) —1.2(1)
0.005 1.01 1,07 —1.45 1.18 —4.69 3.34 1.4 —9.6 2.2(1) —1.0(1)
0.01 1.03 1.14 —1.40 1.37 —4,42 3.00 1.8 —8.8 1.9(1) —8.4
0.02 1.05 1.29 —1,31 1.79 —3.97 2.48 2.8 -7.7 1.5(1) -5.8
0.005 1.13 1.74 —1.11 3.41 —3.09 1,57 8.1 —~5.6 8.1 —2.5
0.1 1.25 2.55 —8.95(—1) 7.37 =2.30 8.99(-1) 2.7(1) —4.0 4.1 —9.6(—1)
0.2 1.46 4.44 —6.56(—1) 2.09(1) —1.55 4.24(-1) 1.3(2) -~2.5 1.7, —2.7(-1)
0.5 2.00 1.19(1) —3.76(—1) 1.20(2) —8.07(-1) 1,20(-1) 1.7(3) -1.3 4.4(-1) —3.6(-2)
1 2.75 2.95(1) —2.24(-1) 5.59(2) —4.57(—1) 3.91(-1) 1.5(4) -6.9(—1) 1.3(-1) —~6.2(—3)
t c(1,0,0) c(1,1,1) &(1,1,0) c(1,2,2) &(1,2,1) e(1,2,00  ¢(1,3,3) &(1,3,2) &(1,3,1) &(1,3,0)
0 1.00 1.00 —2.00 1.00 —6. 00 6.00 1.00 —~1.20(1) 3.60(1) ~2.40(1)
0.001 1.00 1.02 —1.98 1.04 —5.91 5. 84 1.1 —1.2(1) 3.5(1) —2.3(1)
0.002 1.01 1.04 —-1.97 1.08 —5.83 5.70 1.1 -1.2(1) 3.3(1) -2.2(1)
0.005 1.02 1.09 —1.91 1.21 —5,59° 5.28 1.4 —~1.1(1) 3.0(1) -1.9(1)
0.01 1.04 1.18 —1.84 1.45 —5.24 4,69 1.9 ~1.0(1) 2.6(1) —~1.5(1)
0.02 1.09 1.37 —1.70 1.99 —4, 67 3.80 3.2 -~8.6 1.9(1) ~1.0(1)
0.05 1.21 2.00 —1.41 4.12 —3.57 2.31 1.0(1) —6.2 1.0(1) —4,1
0.1 1.41 3.19 -1.11 9.95 —2.61 1.28 3.9(1) -4.3 5.2 -1.5
0.2 1.77 6.19 —7.91(—1) 3.18(1) —1.74 5.83(—1) 2.1(2) —2.8 2.1 —4.2(-1)
0.5 2,77 1.98(1) —4.,39(—1) 2.21(2) —8.90(—1) 1.59(-1) 3.4(3) ~1.4 5.2(—1) ~5.3(—2)
1 4,33 5.70(1) —2.57(-1) 1.21(3) -5, 00(—1) 5.09(—2) 3.5(4) —7.4(-1) 1.6(-1) -—8.9(-3)
t c0,00 c1,1)  &QE1,0 c},2,2) ¢¢2,1) ¢3,2,0)  cE3,3) #G,3,2 eGs3 1D &30
0 1.00 1.00 —2.50 1.00 —7.00 8.75 1.00 ~1.35(1) 4.73(1) ~3.94(1)
0. 001 1.01 1.02 —2.47 1.05 —6.89 8.49 1.1 ~—1.3(1) 4.5(1) ~3.7(1)
0.002 1.01 1.04 —2.45 1.10 —6.78 8.25 1.2 —1.3(1) 4.4(1) ~3.5(1)
0.005 1.03 1.11 —~2.38 1.25 —6.48 7.59 1.5 —1.2(1) 3.9(1) —3.0(1)
0.01 1.07 1.23 —-2.27 1.54 —6.03 6.67 2.0 —-1.1(1) 3.3(1) —2.4(1)
0.02 1.13 1.48 —2.08 2.19 —5.33 5.30 3.6 ~9.5 2.4(1) ~1.6(1)
0.05 1.31 2.31 —1,68 5.04 —4.01 3.11 1.3(1) —6.8 1.3(1) —6.1
0.1 1.62 4.03 -1.29 1.34(1) —2.90 1.67 5.6(1) —4.7 6.2 —2.2
0.2 2.21 8.72 —9.03(-1) 4.87(1) —-1.90 7.40(—1) 3.5(2) -3.0 2.5 ~5.8(—1)
0.5 3.98 3.33(1) —4, 88(—1) 4.10(2) —3.62(—1) 1.95(—1) 6.7(3) —1.4 6.1(-1) —7.0(—2)
1 7.11 1.12(2) —2.82(-1)  2.63(3) —5.36(—1) 6.16(—2) 8.3(4) ~7.9(-1) 1.8(-1) —1.2(-2)
i c(2,0,00 ¢(2,1,1) &2,1,0) c(2,2,2) @@2,2,1) ¢(2,2,0) c(2,3,3) 2(3,3,2) ¢&2,3,1) 22,30
0 1.00 1.00 —3.00 1.00 —8.00 1.20(1) 1.00 —1.50(1) 6.00(1) —6.00(1)
0.001 1.01 1.03 —-2.96 1.06 —7.86 1.16(1) 1.1 —1,5(1) 5.7(1) —5.6(1)
0. 002 1.02 1.05 ~2.93 1.11 —7.72 1.12(1) 1.2 —1.4(1) 5.5(1) —5.4(1)
0.005 1.04 1.14 —2.83 1.29 —17.35 1.03(1) 1.5 —1.3(1) 4,.9(1) —4.5(1)
0.01 1.09 1.28 —2.69 1.62 —6.81 8.92 2.2 —1.2(1) 4.1(1) —3.5(1)
0.02 1.18 1.59 ~2.44 2.43 —5.97 6.97 4.1 —1.0Q1) 3.0(1) —2.2(1)
0.05 1.44 2.70 —1.93 6.19 —4.,42 3.96 1.7(1) -~7.3 1.5(1) —8.4
0.1 1.89 5.14 ~1.46 1.82(1) —3.15 2.07 7.9(1) -5.0 7.2 -2.9
0.2 2.82 1.25(1) —9,98(—1) 7.54(1) —2.04 8.91(—1) 5.8(2) —-3.1 2.9 —T7.5(—1)
0.5 5.92 5.69(1) —5.28(-1) 7.69(2) —1.02 2.29(—1) 1.3(4) —1.5 6.8(—1) —8.8(-2)
1 1.21(1) 2.22(2) —3.02(—1) 5.78(3) —5.67(1) 7.13(—2) 2. 0(5) —8.2(-1) 2.1(-1) —1.5(=2)
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t c3,0,00 G LY £¢1,0) cG,2,2) 3,21 2¢,2.00  ¢G3,3)  #G3,2  &G3,1) 2630
0 1.00 1.00 ~3.50 1.00 —9.00 1.58(1)  1.00 —~1.65(1) 7.43(1)  —8.66(1)
0. 001 1.01 1.03 —3.45 1.06 —8.83 1.52(1) 1.1 -1,8(1) 7.1 ~8.1(1)
0.002 1.02 1.07 ~3.41 1.13 ~8.66 1.47(1) 1.2 —~1.6(1)  6.81) ~7.6(1)
0.005 1.06 1.17 —3.28 1.29 —8.21 1.33(1) 1.6 ~1.5(1)  6.0(1) —6.3(1)
0.01 1.12 1.34 —~3.09 1.73 —7.57 1.14(1) 2.4 ~1,3(1)  4.9Q) —4, 8(1)
0.02 1.24 1.73 —2.178 2.72 —6. 58 8.78 4.7 —1.1(1)  3.6Q1) —~3.0(1)
0.05 1.60 3.18 ~2.16 7.63 —4.81 4.83 2.2(1) 1.8 1.8(1) ~1.1(1)
0.1 2.25 6.63 ~1.60 2.50(1)  —3.39 2.46 1.2(2) —5.3 8.3 3.7
0.2 3.67 1.80(1)  —1.08 L17Q2)  —2.11 1,04 9.4(2) —~3.3 3.2 —9.2(~1)
0.5 9.02 9.85(1)  —5.62(~1) 1.45(3) —1.08 2.60(-1)  2.7(4) ~1.6 7.6(-1)  ~1.1¢-1)
1 2,11(1)  4.47(2)  —3.18(-1) 1.28(4)  —5.94(~1) 8.00(-2) 4.6(5 ~8.5(-1) 2.2(-1) —1.7(-2)
t ¢(3.0,0) ¢(3,1,1) &@3,1,0) €3,2,2)  &3,2,1)  &3,2,00 ¢(3,3,3) &3,3,2) &3,3,1) £(3,3,0
0 1.00 1.00 —4.00 1.00 —~1.00(1)  2.00{1)  1.00 ~1.80(1)  9.00(1)  ~1.20(2)
0.001 1.02 1.04 —3.91 1.07 ~9.79 1.82(1) 1.1 ~1.8(1)  8.6(1) -1.1(2)
0. 002 1.03 1.08 —3.88 1.14 ~9.59 1.85(1) 1.2 —1.7¢1) 8.1 —1.0(2)
0. 005 1.08 1.20 -3.73 1.38 —9.07 167 1.7 —1.6(1)  1.1(1) —8.6(1)
0.01 1.15 1.41 ~3.49 1.84 —8.31 1.42(1) 2.6 —1.4(1)  5.8(1) —6.5(1)
0.02 1.31 1.89 ~3.11 3.05 .17 1.07(1) 5.4 —1.2(1)  4.2(1) —4.0(1)
0.05 1.80 3.78 —2.38 9.54 ~5.117 5.73 2. 8(1) 8.3 2.0(1) ~1.4(1)
0.1 2.71 8.65 —1.74 3.45(1)  —3.60 2.85 1.6(2) 5.6 9.3 —4.5
0.2 4.88 2.64(1)  —1.15 1.84(2)  —2.29 1.17 1.5@) 3.4 3.6 —1.1
0.5 1.41(1)  1.78(3  —~5.90{(—1) 2.76(3) —1.12 2.89(-1) 5.3(4) 1.8 8.3(-1)  —1.3(=1)
1 3.81(1)  9.14(2)  —3.31(-1) 2.84(4)  —6.18(=1) 8.79(=2) 1.1(6) —8.9(-1) 2.4(-1) —2.0(-2)

When the g,,(t) are evaluated, these values are
directly substituted into (18), and so on. The
results are tabulated in Table I for some low

infegral and half-odd integral values of a. The
entries corresponding to { = 0 are by the nonrela-

tivistic formulas given in Sec. ITI.

* Work performed under the auspices of the U.S. Atomic
Energy Commission.
1 For a discussion of the Sonine polynomial expansion method,

Finally it should be pointed out that a very care-
ful evaluation of the g functions is essential in

calculating these coefficients. This is especially
true for higher-order (i.e.,large m) terms. This

m = 3 in Table 1.

see, for example, J. O. Hirschfelder, C. F. Curtiss,and R. B.

is why only two significant figures are given for

Bird, Molecular Theory of Gases and Liquids (Wiley, New
York, 1954).

2 See, for example, Handbook of Mathemalical Functions,edited

by M. Abramowitz and I. Stegun (Dover, New York, 1965).
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If a body with a small charge is dropped into a
static black hole,1:2 a number of different out-
comes seem plausible3:4 as the body approaches
the event horizon: (i) The body's electromagnetic
field may create a sufficiently large siress energy
that it may destroy the event horizon or make it
singular; (ii) the event horizon will not be des-
troyed. I the latter outcome holds, the resultant
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The electrostatic field of a point charge at rest in Schwarzschild space is derived. The solution is used to
study the problem of a point charge slowly lowered into a nonrotating black hole. We find that the electric
field of the charge remains well behaved as the charge is lowered and that all the multipole moments

except the monopole fade away. We conclude that a Reissner—Nordstrom black hole is produced.

1. INTRODUCTION
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metric would be the Reissner~Nordstrom metric
if the topology of the event horizon does not change.

This conclusion can be drawn from a theorem

provided by Israel5: The Reissner-Nordstrom

solution is the only static, asymptotically flat,
electrovac solution of Einstein's equations for
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t c3,0,00 G LY £¢1,0) cG,2,2) 3,21 2¢,2.00  ¢G3,3)  #G3,2  &G3,1) 2630
0 1.00 1.00 ~3.50 1.00 —9.00 1.58(1)  1.00 —~1.65(1) 7.43(1)  —8.66(1)
0. 001 1.01 1.03 —3.45 1.06 —8.83 1.52(1) 1.1 -1,8(1) 7.1 ~8.1(1)
0.002 1.02 1.07 ~3.41 1.13 ~8.66 1.47(1) 1.2 —~1.6(1)  6.81) ~7.6(1)
0.005 1.06 1.17 —3.28 1.29 —8.21 1.33(1) 1.6 ~1.5(1)  6.0(1) —6.3(1)
0.01 1.12 1.34 —~3.09 1.73 —7.57 1.14(1) 2.4 ~1,3(1)  4.9Q) —4, 8(1)
0.02 1.24 1.73 —2.178 2.72 —6. 58 8.78 4.7 —1.1(1)  3.6Q1) —~3.0(1)
0.05 1.60 3.18 ~2.16 7.63 —4.81 4.83 2.2(1) 1.8 1.8(1) ~1.1(1)
0.1 2.25 6.63 ~1.60 2.50(1)  —3.39 2.46 1.2(2) —5.3 8.3 3.7
0.2 3.67 1.80(1)  —1.08 L17Q2)  —2.11 1,04 9.4(2) —~3.3 3.2 —9.2(~1)
0.5 9.02 9.85(1)  —5.62(~1) 1.45(3) —1.08 2.60(-1)  2.7(4) ~1.6 7.6(-1)  ~1.1¢-1)
1 2,11(1)  4.47(2)  —3.18(-1) 1.28(4)  —5.94(~1) 8.00(-2) 4.6(5 ~8.5(-1) 2.2(-1) —1.7(-2)
t ¢(3.0,0) ¢(3,1,1) &@3,1,0) €3,2,2)  &3,2,1)  &3,2,00 ¢(3,3,3) &3,3,2) &3,3,1) £(3,3,0
0 1.00 1.00 —4.00 1.00 —~1.00(1)  2.00{1)  1.00 ~1.80(1)  9.00(1)  ~1.20(2)
0.001 1.02 1.04 —3.91 1.07 ~9.79 1.82(1) 1.1 ~1.8(1)  8.6(1) -1.1(2)
0. 002 1.03 1.08 —3.88 1.14 ~9.59 1.85(1) 1.2 —1.7¢1) 8.1 —1.0(2)
0. 005 1.08 1.20 -3.73 1.38 —9.07 167 1.7 —1.6(1)  1.1(1) —8.6(1)
0.01 1.15 1.41 ~3.49 1.84 —8.31 1.42(1) 2.6 —1.4(1)  5.8(1) —6.5(1)
0.02 1.31 1.89 ~3.11 3.05 .17 1.07(1) 5.4 —1.2(1)  4.2(1) —4.0(1)
0.05 1.80 3.78 —2.38 9.54 ~5.117 5.73 2. 8(1) 8.3 2.0(1) ~1.4(1)
0.1 2.71 8.65 —1.74 3.45(1)  —3.60 2.85 1.6(2) 5.6 9.3 —4.5
0.2 4.88 2.64(1)  —1.15 1.84(2)  —2.29 1.17 1.5@) 3.4 3.6 —1.1
0.5 1.41(1)  1.78(3  —~5.90{(—1) 2.76(3) —1.12 2.89(-1) 5.3(4) 1.8 8.3(-1)  —1.3(=1)
1 3.81(1)  9.14(2)  —3.31(-1) 2.84(4)  —6.18(=1) 8.79(=2) 1.1(6) —8.9(-1) 2.4(-1) —2.0(-2)

When the g,,(t) are evaluated, these values are
directly substituted into (18), and so on. The
results are tabulated in Table I for some low

infegral and half-odd integral values of a. The
entries corresponding to { = 0 are by the nonrela-

tivistic formulas given in Sec. ITI.

* Work performed under the auspices of the U.S. Atomic
Energy Commission.
1 For a discussion of the Sonine polynomial expansion method,

Finally it should be pointed out that a very care-
ful evaluation of the g functions is essential in

calculating these coefficients. This is especially
true for higher-order (i.e.,large m) terms. This

m = 3 in Table 1.

see, for example, J. O. Hirschfelder, C. F. Curtiss,and R. B.

is why only two significant figures are given for

Bird, Molecular Theory of Gases and Liquids (Wiley, New
York, 1954).

2 See, for example, Handbook of Mathemalical Functions,edited

by M. Abramowitz and I. Stegun (Dover, New York, 1965).
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If a body with a small charge is dropped into a
static black hole,1:2 a number of different out-
comes seem plausible3:4 as the body approaches
the event horizon: (i) The body's electromagnetic
field may create a sufficiently large siress energy
that it may destroy the event horizon or make it
singular; (ii) the event horizon will not be des-
troyed. I the latter outcome holds, the resultant
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theorem,5 a paradoxical situation arises since the
nonspherical charge distribution occurring as the
body approaches the horizon must give rise to a
spherical electric field according to the theorem.
The only escape from this outcome is for the
horizon to become singular, be destroyed, or be-
come multiply connected or disconnected.é If one
of these latter possibilities were to occur, a static
black hole could not be found in nature since (even
if it were formed) a charged particle would fall in
and destroy it.

The closely related problem of the magnetic field
of a collapsing, nonrotating star has been treated
by Ginzburg and Ozernoi? and Anderson and
Cohen.8 In this case, Israel's theorem implies
that either (a) the magnetic field must prevent the
formation of a nonsingular, topologically spherical
event horizon {e.g., by becoming infinite at the
horizon, thereby creating a singularity there) or
{b) the collapsing star becomes a Schwarzschild
black hole and the magnetic field goes to zero
everywhere. Under the assumptions that the
magnetic field is frozen in and that the collapse
proceeds aditbatically, the above-cited authors
find that the magnetic field tends to become com-
pressed against the surface of the collapsing star
as it approaches its Schwarzschild radius. Thus,
the magnetic field a finite distance from the sur-
face of the star tends to go to zero [thus supporting
the likelihood of possibility (b)], but, on the other
hand, the field tends to blow up at the Schwarzs-
child radius as the surface of the star reaches it
[thus supporting possibility (a)}: The analysis,
based on the assumption that the magnetic field
has a negligible effect on the metric, becomes
invalid at this final stage. Recently, de la Cruz,
Chase, and Israel,® Anderson,10 and Pricell have
considered other problems involving the fading out
of multipole moments during gravitational
collapse,

In this paper we consider the problem of a point
charge slowly lowcred into a Schwarzschild black
hole as a simple example where the final outcome
can be investigated. We find that, as the charge is
brought near the horizon, the electrostatic field
remains well behaved, while all the multfipole
moments, except the monopole, fade away, so that
a Reissner-Nordstrom black hole is produced.

In Sec. I, an expression is obtained for the electro-
static field of a point test charge at rest in
Schwarzschild space, In Sec. III this result is

used to investigate the questions raised in the
above paragraphs.

II. ELECTROSTATIC FIELD OF A POINT TEST
CHARGE IN SCHWARZSCHILD SPACE

Maxwell's equation in curved space may be written
in the form,1

B __g)l/szp], (1)

VT g2 o

At = L 2 [¢
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F =4, = AL (2)
where the semicolon denotes covariant derivative
and the comma ordinary derivative. Combining
these equations, we have,

1

dmjt = ~ )1/2 dxv

{( gn/izgrgus (A,  — A, I

@

Here we use the standard Schwarzschild co-
ordinates, with the metric

dS% =—(1—2m/v)dt2 + (1 — 2m/v)~tdr2
+ r2(d62 + sin20de2).

We are interested in the case of a point test
charge held at rest at the point » = b, .= 0. (Here
b >'2m or the charge could not be held at rest.)
We choose the charge to be sufficiently small that
the interaction of the electrostatic field back on
the metric is negligible. [Of course, once the
calculations are completed, we must check that the
electrostatic field (and hence the gravitational
perturbation) calculated under this assumption is
indeed small. ] Since the field of the point charge
(on the Z axis) must be static and axially sym-
metric, the components of the electromagnetic
field will not be a function of time or ¢. Since the
spacelike components of the current vanish

ji= 0,i = 7,0, @, we may take A; =0 (no mag-
netic f1elds) Setting A, = v, we obtam as the

only nontrivial equation (p = #)

. v 1 1
— 47 0 -2 - 7-2_._
7 < 67’) 1~ 2m/r +2 sing
d dv
* 6 (Smeae)

If the angular part of the potential is expanded in
Legendre polynomials in cos®,

(4

olr, 6) = g(‘,) (1P, (cosb), (5)

then in the source-free regions (j0 = 0) the
equation for R,(r) becomes

2m) d
o={1- dr
The solutions of this equation have been obtained
independently by Israel5 and by Anderson and

Cohen.8 We use as the two linearly independent
solutions of (6)

(72;1;_) — Il + DR, (r). (6)

1, foril =0,

&) = )znv(z—- 1)1 m?
‘—'—‘W"—(T Zm)

for 1= 0,

o).

(7a)
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(21 + 1)

L) == 2U(1 + 1)1 1mi+1

e ey,

where P, and @, are the two types of Legendre
functions.8:12 We note the following properties of
fi(r) and g, (r):

(I) For I = 0,g,(7) = 1 (by definition) and
fo(r) =1/r.

(Il) For all I, as » — ©, the leading term of
g,;(r) is v*, while the leadmg term of f,(r) =
1/7i+1, (The normalization factors were chosen
for just this reason.)

(1) As » — 2m, f,(¥) — finite const, but
df,/dr blows up as ln(l — 2mr~1) for I # 0. For
1#0, g,(r) = (r — 2m) X (polynomial in 7), so, as
v - 2m,g,(r) > 0as (r — 2m).

The above three properties of f,(r) and g,(») are
all that will be used in the following analysis. But
for completeness we give analytic expressions for
each term in the multipole expansion.

For a point charge at rest at » = b, 6 = 0 we have
jO = const X 8(r — b)d(cosd — 1). [The normaliza-
tion of these & functions is

[726(r — b)dr = 1, [6(coss — 1) singdode = 1].

The constant is determined by the requirement
that the total charge be ¢, where ¢ is the conserved
quantity given by (the standard methodl3 of
showing this for a bounded source is to integrate
the conservation law j!, = 0 over all space-time
and to use the curved space form of the divergence
theorem)

e = [j%( g)/2drdop = { o2 sinedrdode.  (8)
Thus,

jO = eb(r — b)b(coss — 1), (9)
and Eq. (4) for this source becomes
— 47eb(r — b)d(coss — 1) = 10 (1'2@—)

¥23r \ o
1 1 ) dv
+ sing — 10
1—2m/r »2 sin29 86( 89> (10)

In the regions » > b and » < b, j O vanishes and,
consequently v satisfies the source-free equation
(6), with the solution

l:i()) [4,/,(r) + Ajg,(r)]P/(cosd), »>b,
’U('V, 9) =
zg':') [B,g,() + B, f,(r)]P,(cosB), »<b,
(1i1)

The g,(») blow up as »* for » = © [property (1)},
so that we must have A} = 0. The constants B}
can be determined by requiring that the invariant

___1 2
—e=gry1\b
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LF Fw —<a”> + L —-1——(3—”)2 (12)
o7 2 1 — 2m/r \06
be finite as » = 2m. From property (III) we see
that although f,(») remains finite at » = 2m, it
produces infinite fields for I = 0 at » = 2m,
unless we have B} = 0. [f,(») = "1 does not pro-
duce infinite fields at » = 2m, but is excluded
since it represents an additional source at » = 0.
Note that we are assuming that for fixed b the
field is finite at » = 2m; we are not assuming that
the field remains finite at » = 2m as b = 2m. We
will investigate this question later.] Thus, we have

léAlf,(r)Pl (cosd), >0,
V= ; (13)
l{“JOB,g,(r)PZ (coss), »<b.

Continuity of v (and consequently of E;) at » = b
requires that

Azfz(b) = Blgz(b)- (14)
Thus, letting C, = A,/g,(b) = B,/f,(b), we have
5 CLe®) /NP eoss), 7> b,
v={ (15)
E C,f,b)g,(r)P,(cosg), »<b.

We evaluate C, by integrating Eq. (10) across the
source as is often done w1th the flat space Maxwell

equations. Writing v = Zz _oR,(r)P,(cos8), multi-
plying (10) by P,(cosf), and mtegratmg over 0, we

get
2 1 d< dR>
¥
20+ 1 ’Vzd’V dr

i+
r2(1 — Zm/r)Rl(y)] ’

— 2eb(r —b) =

(18)

where we have used the following properties of
Legendre functions: P,(1) =1 and f lp ()P} (x)dx =

2(27 + 1)715,,» . Multiplying by »2 and integrating
from b — e to b + €, we get
b—e)

Cl
T gz(b) (b) fl(b) (b))

+
C,
+

dR,

dR,
dr 2

T

bt+e

=g 1b2Wlg,, /1, 0), amn

where W(g,, f,,b) is the Wronskian of g, and f; at
the point b. But the Wronskian W = (uju)

— uyuy)
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of two solutions u,, «, of a differential equation of
the form u” + p(xiu' + glx)u = 0 satisfies14

W(uly Ug, r) = W(ul, Ug, ’Vo) exp (—fr:)p (x)dx}.
18)

In the case of our Eq. (6),p(x) = 2/x, so that (18)
yields

W(glyfz,"’) = W(gz,fzsro)"’%/'rz- (19)
Thus there results,
r2W(g,,f;, ) = const. (20)

We evaluate this constant by finding W(g,, f;, 7) for
large values of ». By property (II) of the functions
f, and g, , we have, for large 7, g(») ~ v and f,(r) ~
1/r*1 so that for large » [and therefore, by (20),
for all ], we have

r2W(g,,f,,v) =72 (rl[— (1+1)] Tl—lz — i1 711+1>
(21)
=— (20 +1). 22)

Substitution of (22) in (17) gives the simple result

Cl = e. (23)
Thus the field of a point charge is given by
00
el_Eog,(b)f,(r)P,(cose), r>b,

eljzo())fl(b)gl(r)Pl(cose), r <b.

In the orthonormal frame w® = (1 — 2m/¥)1/2dt,
wl =dr(l — 2m/7)"1/2, w2 = vdp, w3 = 7 sindde,
the only nonvanishing components of the field
tensor F, are

v
For=—Fio=—75,
-1/29y
a—e-.

2m

= —— 112"
Ry =—Fyq=—7 (1 r) (25)

We note that [as seen from Eq. (24) with » < b and
property (III) of the functions 7,], forb > rand 7
near 2m, Fyo ~0[(1 — 2m/r)1/2], while F,, re-
mains finite, so that a stationary observer posi-
tioned at radius » with b > r = 2m sees a radial
electrostatic field. (No net flux enters the black hole,
however, since as many flux lines exit the black
hole from the side opposite the charge as enter
from the side near the charge.) But if » > b with

7 and b both near 2m, the I = 0 contribution to

the electrostatic field is mostly tangential because
[as seen from Eq. (24) with » > b and property (III)
of the functions f;] Fy o/ Fgq ~ (1 — 2m/7)1/2 In(1
— 2m/r) - 0;this phenomenon has been noted for
the dipole case by Ginzburg and Ozernoi? and for

JEFFREY M. COHEN, ROBERT M. WALD

the general case by Anderson and Cohen.8 Never-
theless, the dominant contribution to the field in
this case comes from the ! = 0 term because the
coefficients g,(b) of the higher multipole terms
vanish like (1 — 2m/b), so that the total electro-
static field is still mostly radial in this case. A
plot of the field lines corresponding to the above
solution will be given elsewhere by Wheeler and
Ruffini [see also R. Hanni, Princeton junior paper
(1971)].

Oo. ASYMPTOTIC FIELD OF A TEST CHARGE
LOWERED INTO A SCHWARZSCHILD BLACK
HOLE

As mentioned above, we chose the functions g,(7)
for the region » < b, so that the electrostatic
field of a test charge at » = b is well behaved at
the horizon. In doing this we have only assumed
that a test charge placed at finite distance from
the horizon does not produce infinite fields there.
Now let us consider what happens if we lower a
charge (sufficiently slowly so that our static
results can be used) toward r = 2m. Does the
electrostatic field tend to blow up at the horizon
as b~ 2m, or will it remain finite there? We see
from Eq. (24), with » < b and property (II) of the
functions g, and f, that F,, and F,, both remain
finite at » = 2m as b — 2m; we also see [using

Eq. (24) with » > b] that F,; and F,, remain finite
outside of the radius b of the charge as b— 2m,
since the logarithmic divergence of df,/dr (I # 0)
is now more than compensated by the linear
decrease to zero of g; (I # 0). Thus, the field
remains well behaved as we slowly lower a charge
toward the horizon, and we conclude that we do not
drastically affect the horizon in this process.

On the other hand, let us examine the limiting
value of the field seen by any observer at » > 2m
as b > 2m. From Eq. (24) (with » > b) and the fact
that,for [ = 0,g,(b) > 0 as b= 2m, we see that all
the multipole contributions to v except the monopole
go to zero as b— 2m. Since gy =1 and f = »~1,
we have the result that for all » > 2m, v(z, 6} -
e/r as b— 2m. Thus, although the charge distri-
bution is highly asymmetrical as b = 2m, the
electrostatic potential approaches the spherically
symmetric Reissner~Nordstrom value of e/7.

From the results of the above two paragraphs and
our discussion in the Introduction, we conclude that
as we slowly lower a test charge into a Schwarz-
schild black hole, we produce a Reissner~Nord-
strom black hole.
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The Cook formalism for Fock space is extended by finding additional properties of the creation and anni-
hilation operators and by giving a rigorous definition of the second-quantized form for n-body operators
(for any 7). Properties of these second-quantized operators are given, including an expansion in terms

of the creation and annihilation operators.
I. INTRODUCTION

By requiring that creation and annihilation opera-
tors ("fields") create or annihilate particles with
definite probability functions, Cook! was able to
define rigorously the fields as linear operators
on Fock space. He furthermore gave a rigorous
definition of the second-quantized form for one-
body operators and found certain relations between
the operators and the fields. This formalism was
not developed sufficiently for considering inter-
actions between pairs of particles, an inherently
two-body interaction. We extend Cook's result to
handle this and other problems by defining the
second-quantized form of n-body operators for
any ». With this definition we establish certain
properties of these operators, including expan-
sions in terms of the fields. The results are then
applied to several common interactions.

In Sec.II we define Fock space. In Sec.IIl we
define the second-quantized forms of n-body ope-
rators and derive some important properties for
them. In Sec.IV we review Cook's definitions of

the fields and results, which we state without proof,

as well as derive some new properties. In Sec.V
we obtain expansions of the second-quantized
»-body operators in terms of the fields. Finally,
we analyze the free Hamiltonians, the Yukawa
interaction, and the Coulomb interaction as exam-
ples of the method.

II. THE FOCK SPACE

Definition 1: Let 36 denote 4 given complex
Hilbert space. Let 3C %) denote the n-fold tensor
product of J€ (D with itself. Let 3€ denote the
one-dimensional Hilbert space of the complex
numbers. Then we define

o0
F=2 a3Ccn,
n=0

¢ Vis the single-particle Hilbert space,3C ) the
n-particle Hilbert space, and & the Fock space.2
We let i denote the natural isomorphism

1 HW=208...000H-D e 00...0f W
into F. We let {P } denote the resolution of the
identity corresponding to P, F =i JC ),

. SECOND QUANTIZATION OF N-BODY
OPERATORS

Definition 2: Let A; be densely defined, closed,
linear transformations on the Hilbert spaces 9..
Then A, ® --- @ A, is the densely defined, closed,
linear tra.nsformatmn onH;® -V 9, w1th
domain D(4, )® - ® D(A,) equal to the set of
all # in @1 ®$ such that there exists g in
'bl - ® @ Wlth (gl (pl *® ¢n) = (

A1<p1 ®:® A"(pn) for all @, in D(A]), in which
case 4, - ® A ))h=g.

In our case,all 9, —:rc<1>- we will denote the n-fold
tensor product A® --- 8 A by A inJC(»), IfIM
is any subset of .'!c(l) we will denote the manifold
in 3C(® of all finite linear combinations of decom-
posable elements of J(»), all of whose product fac-
tors lie in M, by M (=], We will denote the identity
operator on 3¢ by 1.

Definition 3: Let S, denote the symmetric group
on n objects. For every permutation 7 € S_, there
corresponds a unitary operator U, on Je(n '5un1que-
ly defined as the bounded li.near extension of the
operator U, ¢ 1 ® - AW® O Y oy
on decomposable tensors m .'IC(" The n! dlmen-
sional ring G, generated by the set {U/,}, with
v,U, =U,,,is isomorphic with the group algebra.
Any {inear operator A in JC(» will be called an

n-body operator. We will now list a hierarchy of
domain conditions which A might satisfy.

Definition 4: Let A be a densely defined, linear
operator in JC(),
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The Cook formalism for Fock space is extended by finding additional properties of the creation and anni-
hilation operators and by giving a rigorous definition of the second-quantized form for n-body operators
(for any 7). Properties of these second-quantized operators are given, including an expansion in terms

of the creation and annihilation operators.
I. INTRODUCTION

By requiring that creation and annihilation opera-
tors ("fields") create or annihilate particles with
definite probability functions, Cook! was able to
define rigorously the fields as linear operators
on Fock space. He furthermore gave a rigorous
definition of the second-quantized form for one-
body operators and found certain relations between
the operators and the fields. This formalism was
not developed sufficiently for considering inter-
actions between pairs of particles, an inherently
two-body interaction. We extend Cook's result to
handle this and other problems by defining the
second-quantized form of n-body operators for
any ». With this definition we establish certain
properties of these operators, including expan-
sions in terms of the fields. The results are then
applied to several common interactions.

In Sec.II we define Fock space. In Sec.IIl we
define the second-quantized forms of n-body ope-
rators and derive some important properties for
them. In Sec.IV we review Cook's definitions of

the fields and results, which we state without proof,

as well as derive some new properties. In Sec.V
we obtain expansions of the second-quantized
»-body operators in terms of the fields. Finally,
we analyze the free Hamiltonians, the Yukawa
interaction, and the Coulomb interaction as exam-
ples of the method.

II. THE FOCK SPACE

Definition 1: Let 36 denote 4 given complex
Hilbert space. Let 3C %) denote the n-fold tensor
product of J€ (D with itself. Let 3€ denote the
one-dimensional Hilbert space of the complex
numbers. Then we define

o0
F=2 a3Ccn,
n=0

¢ Vis the single-particle Hilbert space,3C ) the
n-particle Hilbert space, and & the Fock space.2
We let i denote the natural isomorphism

1 HW=208...000H-D e 00...0f W
into F. We let {P } denote the resolution of the
identity corresponding to P, F =i JC ),

. SECOND QUANTIZATION OF N-BODY
OPERATORS

Definition 2: Let A; be densely defined, closed,
linear transformations on the Hilbert spaces 9..
Then A, ® --- @ A, is the densely defined, closed,
linear tra.nsformatmn onH;® -V 9, w1th
domain D(4, )® - ® D(A,) equal to the set of
all # in @1 ®$ such that there exists g in
'bl - ® @ Wlth (gl (pl *® ¢n) = (

A1<p1 ®:® A"(pn) for all @, in D(A]), in which
case 4, - ® A ))h=g.

In our case,all 9, —:rc<1>- we will denote the n-fold
tensor product A® --- 8 A by A inJC(»), IfIM
is any subset of .'!c(l) we will denote the manifold
in 3C(® of all finite linear combinations of decom-
posable elements of J(»), all of whose product fac-
tors lie in M, by M (=], We will denote the identity
operator on 3¢ by 1.

Definition 3: Let S, denote the symmetric group
on n objects. For every permutation 7 € S_, there
corresponds a unitary operator U, on Je(n '5un1que-
ly defined as the bounded li.near extension of the
operator U, ¢ 1 ® - AW® O Y oy
on decomposable tensors m .'IC(" The n! dlmen-
sional ring G, generated by the set {U/,}, with
v,U, =U,,,is isomorphic with the group algebra.
Any {inear operator A in JC(» will be called an

n-body operator. We will now list a hierarchy of
domain conditions which A might satisfy.

Definition 4: Let A be a densely defined, linear
operator in JC(),



1850 F. E.

D,: We will say that 4 has property D, if in each
w(m), mz=n,

(ﬂ; U, (A® [onn)) -1 )

is densely defined.
D,: We will say that A has property D,, if in each

Im m>n,
(a) there exists a dense domain IR, such that

M, S DA @I ) and UIN, =M, for all 1€ S, ;
(b) there exists a dense domain N, such that
N, S DA @I ) and 4N, =N, for all 7€S,,

D5: We will say that A has propertv Dj if there
exzst dense domains MM, in 36 such that
I S D(4) and W € D(AT.

D We will say that A is particle-symmetry pre-
serving if

UA=AU_forallmesS,.

It is clear that D, implies D, implies D,. We
conjecture a relation between the particle-sym-
metry-preserving property and property D, and
will outline this relation shortly. We also remark
that any closed, bounded, linear operator in JC(»)
has property D, and any densely defined, closed,
linear operator in 3¢ has property D,.

When the minimal closed, linear extension of an
operator T exists, we shall denote it by [7]".

Definition 5: If A is any operator inJe%’ sat-
isfying D,, then the second-quantized form of A,
Q(A4;n), is the densely defined, closed, linear
operator

(’—_ﬁW[ 2 U(A®I("‘"))U‘]

on ff,where the summand is defined to be the zero
operator for m < n.

By property D,,
l: 2 U (A g [(mn) U;l]
TESy,

exists. The special operator Q(I; 1) exists and has
the property Q(I; )¢ = ny for all ¢ € JCi»),

Q(1; 1) is called the number operator and is fre-
quently denoted by N.

Let {E{?},i = 1,---, n, be n spectral families in
¥e @, not necessanly commutmg Then

Q(A;n) =

Ey . SEQ @ 0 EY

-
is a spectral family on 3C{%), and any operator A4,

A= [aly, g, NE, oy,
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is a normal operator on 3€®).3 We will call such
operators s-normal (simple, normal). An operator
A will be called uniformly normal if it can be
written in the form

A= fa(xl,xz,---,x,,)dEx ® o+ ®E,
w1§h respect to a single spectral family {E,} in
3¢ ), and we will say that {E } is a spectral family
associated with A.

Lemma: For anymeS,,
UJJE(L; ) & -+ € E(nya)]U2
=E(m(1; A, q)® -+ ® E(m(n); Ay up-
Proof: Since E(1;44) ® -+ ® E(n; A,) is a boun-

ded operator and since U, is umtary, 1t suffices to
show the result on decomposable tensors. Let

Hr@® - ® fi(, denote any decomposable tensor

on 3¢ @), Then

U“(E(l;)l) R - Q E(M;)n))U;l(f"(l) ® - ®fﬂ,(”))
= U E(LA)® - @ EmAINf1® -+ ® f,)

= U (E(1;)1 ) fy ®
= E(‘”(l);h‘n(l))fn(l) ® - & E(ﬂ(ﬂ);l,"(n))f"w

= (B 2,0) ® -+ € )i Ayq)
X (fﬂ(1)® e ® fw(n))‘

Conjecture: Any s-normal particle-symmetry-
preserving n-body operator is uniformly normal.

- ® E(m;2,)f,)

Plausibility proof: We have

UAUY = [aliy, o A,)dB@ ()5 2y 00) @ -+
® E(m(n); X, ¢y
=A= [aly, 2\ )dELA) ® -
® E(n;2,,).

Since A commutes with

6 - - o
EP; ® [#D g Eg) ® [0 ... 0D ® Eu,, ’

it follows that all Eff? commute with all E(7(j);
Ay(sy for all m € S, wherever a(r,, -+, 2,) is non-
zero. For those A; where o vanishes, we may
choose the E(,t: to be pairwise commuting since
that does not effect the definition of A, We there-
fore obtain the E(;: to be pairwise commuting so

that they may be written as a function of 2 com-
mon spectral family {E,}. A liberal sprinkling of
the Radon-Nikodym theorem then yields

A= fat, -

’un) d E”1®. e ® E“n
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where a1 is some function of @ and the Radon-
Nikodym derivatives. Furthermore, since U _AU;?
=A we have

011(#1, v "p'n) = al(p"rr(l)’ o "’J'ﬂ(ﬂ))

forallmeS,.

Lemma: Any uniformly normal n-body operator
A has property D,.

Proof: We may write A = foz(xl, e
Q@ FE

a can be undefined at most on a subset I'y of R
which is of measure zero with respect to

A ME, ®

r,+ Since A is densely defined and closed,

E, ®:--®E, . We define a representation of 5, in
1 n
Rmby
Vﬂ(xl’ tt ,xm) = (xn(l)’ tee ’xﬂ(m))

on coordinates in R™. Then

m

ry= RT™™)

nelém V"( FO ®

is a set of measure zero with respect to
E, -9 E, ,m=n.
1 m

We define

A ={)\ eR™ 3, la(V,0)) = k}

neS,,

= [e#,2) dE, ®---9E, ,
where
1 ifaxea,
e(k,A) = .
0 otherwise

Then {E, } is a family of projections which con-
verges strongly to the identity as & — .

Let91L,, denote the set of vectors f in 3¢ such
that there exists & < o for which E, f f. Then
9N, is dense inJC*™ and
U, =9, CDAI"™

forall r7e€S§

-
We similarly constructdt,,

Theorem 1: H A is a uniformly normal oper-
ator in JC(”), then Q(4; #) is normal and Q(A4;n)T =
QUAT; n).

Proof: Since the P, reduce Q(A; n), it suffices
to prove the result on each 3™, 1t is trivial for
m <n. For m = n we have
U A I ol

= fa(hli b

= fa(kn—l(l), i

A AE, (©8E,

A1) dEy @@ E, ,
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Jl =
Tles, .

1 -1 (m-n) ~
m[ E U" A®1 U":l

—(——)—m — [Z) JaOqy s 0@)d B, ©

e® E}\m]“'

1
= m —n)! J [ﬂg eyt )‘w(n))]

><dE)\1 ®+® Exm =d,.
J, is closed and normal,
We define A ,, e(k, 1), E,,as before. E,

L™ cpyy).

, com=-
mutes with J,.
Pick f € D{J,). Since

Furthermore, E

E, f € D),

EAkf—>f as k—o,
JlEAkf=J2EAkf=EAkJ2f_)J2f as k-,
and J, is closed, it follows thatJ; =J,. Thus

(A;n) is normal.
Furthermore,
T = 1 " e
27 m—n)! J ﬂgma*()‘n(l)’ ) d E, ®

cee® E)\,,’

i.e.,Q(A;n)T= Q(AT;n).

Corollary 1: Let A, B be uniformly normal
operators inJC*™, Then A and B commute if and
only if Q(A; n) and Q(B; n) commute.

Proof: Let {E4} be a spectral family in 3CV
associated with A and {E3} e associated with
B. Then §(A; n) commutes with Q(B; n) iff E)\1 ®
c'®E EB iff A
commutes with B. "

4 commutes with E® ®...9
A By

Corollary 2: If A and B are linear transforma-
tions in JC® satisfying condition D, such that A = B,
and at least one is closed and bounded then Q(4;n)
= Q(B;n).

Pyroof: A = B implies A — B = 0 on D(A) ND(B).
Since one of A, B is closed and bounded, it follows
that A — B is a positive symmetric operator satis-
fying condition D,. It follows that A — B has at
least one positive self-adjoint extension. Let one
such extension be called (4 — B)’. (4 — B)’ auto-
matically has property D, and ((A —B)’;n) = 0.
Q(A4;n) — Q(B;n) also has property D,. We shall
show Q(A;n) —Q(B;n) CQ ((A—B)’;n). Since the
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P, reduce these operators, it (sslfﬁces to show the satisfies D,. The rest follows from the
extensmn property in eachJC", m = n. Since the rearrangement theorem for finite groups.
U, are unitary operators, it sufflces to show (b) Since B is bounded, we have D(aA + BB) =
(A—B) ® 15 A0 [ _pe [ Let D(A4), A + BB satlaf)ms D,,and Q(B; %) is
(m=n) (mmn) bounded on each3¢®). Thus Q(aA + BB;n)
febDA® I —Bo®1I ). Let g, ® ¢, € exists and Q(aA + BB; n) 2 aQ(A; n) + R (B; n).
. t 1, (m-n)
DA —B)® 3™ ™, Then Pick f € D(Q(aA + 8B;n)). Define
(m=n) (m-n) 5
fae I'™ ~B® I}, 0, © ) f.= 2 Py
s=0

= (f:{AT_BT} 0 ® fP2)

Then f,, converges strongly to f and
t
= (f,{A — B} ¢, ® ¢,)

s — lim [oQ(4; n) + BQUB; n)) f,,

since one of 4, B is bounded. =5 — lim [Q(ad + BB;n)]f,
3 _ . ' - 1t _ T
Sche (ATB)_C_(A BY,then [(A— BY]' c (A— B) s —1lim Z}PQ(aA+BB n)f
=A —B’'. We may then restrict ¢, ® @, to m7 520
D((A — B)'") @ 3" obtaining = Qlad + BB ).
) _ Hence f € D([aQ(A;n) + BQU(B;n)]7).

{ae 1" _Be I ™f 0, © @) (¢) Form =s, we have

= (/A —=BY]"¢; @ ¢p) A4 © I + s)P,,

] - T 1

=(f,{(A-—-—B) ®I(m n)} ¢ ® <P2) :(_m———sT(Z UA®I(m)U">P+m

or f € D[(A —B) ® 1", =" ounPp

n+m *

(m — s)!

. A 1€)]
Theorem 2: Let A be any transformation in JC (d) This follows from Corollary 2.

puitying conditon Dy Lek By 2 S5 055, () Om eacn 30, m 5,

A denote the symmetrized operator I:HZC)S UB®I G ")U ] = 1;?9 UB®I Gnom) -1,
A= ;%T ,Qn U, AU The result follows by taking adjoints.

Then (f) For the first result see Cook.1

@) 4;n) = QE; n); 2;1;g§sAwhgs§H%:‘03§:hty D5, then for A x 0, there

(b) Q(aA + BB; n) [a8(4;n) + BQUB; n)]”; ’

(c) for m,s integers,m = s, lol = 1,A®I(m-n)¢(m) %0,

QA @ I(S) n+s)P,, = W QA; n)P,,..;

(m)
here equals the m-fold tensor product
(d) B, > B, implies Q(By;n)> Q(By; n); where ¢ - eq P

(e) Q(B n)'f = Q(BY;n); of ¢ with itself. Then
{f) if A is any operator in 3¢V, then D(Q(4; 1)) - E 1 oMeF
= § iff A = 0;if A is any positive, uniformly S Sm .
normal operator in 3¢ @ satisfying D, then Consid
D(Q(A;n)) = § 1A =0; onsider 3}
&) [Q(Bp n)Q(Bz,n)] ) Ie(4; m)@ )12 = 35 m=2[(n — n)]-2
E B, o1®. 19 B,;n+ s)] ; m=n ‘
[ s=0 S) x 3 (Unz ®I(m—n)U1r_1(p(m)’ Uwz

(h) [QB,;n), By )] = mves,,

, . &1 ™ yrie™)
[ Z2(2) aqBio ¥ B pm + 0]

= m-2 > (UA
m=n

[tm — n)1]2 nes,

® I(m‘n)Uﬂ_l QO(M),Z ® I(m-n)(p(m)).

s:ls!

Proof:
(a) A satisfies D, implies

From the fact that A is uniformly normal it

1 —
2 U, AU follows that A ® ™ commutes with UA

n' 1r€S
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® I"™y-1 for all 7 € S,,. Thus all terms in
the above sum are positive and

5

m=n m2[(m — n)!)?
x "Z ® I(m-n)q)(m) "2

=nlAe®)z & — -
m=n mz(m —n)!

I2A4;n)el2 > nl(m — n)!

m!

()

Since the B, reduce {, it suffices to prove
the result on each 3™

Q(By; n)QUBy;n)P,
=[m—n)2 T UB, o "™y~
T,pES

m

x U,B, ® " ™y;1

=[m—m]-2 Y UB, 1™
nESm

(wZ) UB, ®

€8y,

on-n) 11\ 71—
Im"Uw1>U,r1.

Any permutation y which leaves B, operating
in the first » components of JC('”) =3% @

geon gives an equal contribution to the above
sum as does any other such .. In fact any ¢
which leaves B, operatmg on n — v of the first

n components of 30" ig equivalent to any other
Y which also leaves B2 operating onn — v of
the first n components of 3 ™ The number

of Y's of this kind is

(X"
7 ¥
[the number of ways of picking, without regard
to order, r objects out of » boxes, another »
objects (spaces) out of m — n boxes, inter-
changing the 7 objects with the » spaces, and

then rearranging the two resulting sets of
n,m —n things]. Furthermore, one such y

yields B, ® I ™+ 1Y 0B, 1" Thus

)(m —n)in!

Q(By; MQUBY; ME, = [(m — n)]~2

min(z ,m-n)
x 75 m—n)n( " m—r;)
Z oz ()"

x U, [(E1 ®17- 17 B,) ® 1"”’”‘”] U1

min(n,m-n)

= X

r=0

'(r'n_zl_n)! (Z)(m ; n)(m —n—¥)!

x QB, 1 199B,;1n+7P,.

Since Q(A;n + 7)E, = 0forn + v > m,i.e.,
¥ > m — n, we may replace the upper 11m1t on
the sum by »n and the desired result follows.

(h) This result follows immediately from (g) by
noting that

1853

Y UB,eI1” 1”98)u1
TES 4.
=% vu”eB, B oIyt
1r€Sn+,’

and
2, UB; ®B,U1

T€Soy

-2, UB,®B U;l =0,
= B © B1 U

IV. THE FIELDS

We shall review some of Cook's definitions and
results which will either be expanded or will be of
use in the next section. Cook's original workl
should be consulted for additional results.

Definition 6: For every f€ J& W, we define the
linear transformation (f ®) on ¥ as the bounded
linear extension of the operation (f ®)jy1 ® -
® Y, =if® Y, ® -+ D Y,. Then [(f )l
= {7l and (f ®) has the adjoint (f ®)1 equal to the
bounded, linear extension of
(f ®)Tid/1® =j(f,tl/1)¢2®

and

'®¢n '®4/n

(fe)ja=0

for a inJe ©,

Let G be an operator-valued function which assigns,
for every n = 1,2, ---,an operator G, in G »» With
G defined to be the identity. The creatlon and
annlhllatlon operators (fields), wg and w ;! res-
pectively, map 3@ into the set of all densely de-

fined, closed, linear transformations on¥ by
o0
= <§0 D G,l> (f ®),
x© -
Wl = w A = [(f o) To c;] .
n=

In particular we will discuss, among others, the
cases where G projects onto the purely symmetric
or purely antisymmetric spaces, We therefore
consider the decomposition of F into superselec-
tion sectors defined by particle symmetry, We re-
call that in each 3C (™ there is a resolution of the
identity I =23 @ (m), where the @ _(m) are the
orthogonal projections onto the Young shapes,
labeled by 7 (i.e., the irreducible representations
of S,). Let t(m) denote any subset of the irreduc-
ible representatlons of S, in 3¢ (™), Since

U, QA;n)ULP,, = Q(A; n)P for all 7 cS , it
follows that any sum T(m) = E Q (m) is 2 pro-

jection which reduces Q(4; n)P We define the
projection T on & by

T=%e% Qim

n=0 ret(m)

for any set {t{(m)}. Then T reduces 2(A;x), and we
write TQ(4;n)T = Q4(4;n), TF = F,. By choosing
G,, = T(m) = the identity, the prOJectlon onto the
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antisymmetric component of 3C (), or the projec-
tion onto the symmetric component of JC (™, we
obtain the unsymmetrized, Fermi, and Bose fields,
respectively. We remark that although we shall
treat only the Fermi and Bose cases, they are not
the only cases of physical interest. For example,
if 3¢ is a tensor product space where some of
the products are irrelevant to a particular physi-
cal situation, then other representations of S,,
become relevant: In particle physics the configura-
tion space part of JC (1 may be neglected, the rest
of 3¢ ® peing finite dimensional, The various
irreducible representations in each JC ) are then
identified as elementary particles. In the Wigner
supermultiplet theory for nuclear physics, the
configuration part of 3¢ @ is also discarded but
only after implying maximal antisymmetry of the
remaining part., In this case only restricted types
of representations of S,, are relevant. We believe
that this formalism may be used for some prob-
lems of the above nature,

A. The Antisymmetric Case
We choose

-1—! 2 o',

Gn - Qa(n) - n: res
n

where ¢” is the parity of the permutation 7, @ (n)
is the projection onto the antisymmetric compo-
nent of 3C(*), We denote the corresponding T

= G by T, and define T, § = §F,, and wg(f)

2

= wTa(f) = w, (), w}a(f = wl(f). We restrict all
operators to & .

For any orthonormal basis {%} of W, we define
an orthonormal basis {(¢7! ¢5% - - ,2«:} of §_, where
n, = 0 or 1 and 2;;n; < ©, by (o1t @2+ ),

=j [(Eini)!]l/zQu(Eini)(Pl @R P;B Py B -
® Py ® @z, (the element ¢, appears =n; times

in the tensor product). The definition of (¢}
@%+++), is extended so that the vector is zero if
n, > 1or n,<O0 for any k. We shall use the abbre-
viated notation of not listing ¢, if n; = 0; thus

(@1102203%0,%0351 ), =101, 05,057 )y

Let Py Piy, o ee, Piy be a selection from the basis
such that i, < i, < -+ <4i,. We observe that if 7
is a permutation of (1,2, - - - ,#), with parity o', then

wa((pi,n,(l)) wq(¢71“(2)) e wa((P,-"(n)) lo)

- Unl(pil’ e, ¢in>a’

where |0) is a unit vector in J€ (the vacuum
state). By direct computation on the given basis

it follows that w (@) and w [ (¢) are bounded linear
transformations on &, such that

lw (@) = lwl (o)l = lol

SCHROECK, Jr.

and
wlap + by) = aw (@) +bw (¥),
wl (ap+ by) = a*wl (¢) + b* Wl (Y).

Lemma 1,: For allf € JEO
n
w(f) = uniform limit g(f, ¢)w lp,) as n-w,
Pyoof:

0l = 5 0o = fou(f = L1000

| |

= Hf—é(,f,sot)wiﬂ,

which is arbitrarily small for sufficiently large »
since {¢,} is an orthonormal basis.

Definition 7: I y1,¥, € 3ICW, then ¢ ¢} is the
bounded linear operator on JC @ gefined by
(Y1¥2¥) @ = (9,¥,)¥,. We define the anticommu-
tator [A, B], = AB + BA wherever the right-hand
side exists, I, denotes the identity in F_.

With these definitions Cook obtains the following
results:
(i) w, () wl W)=, (py*;1);

wl (Ww (@) = (o, ¥, — 2 (o¥*; 1);
(i) [wul), wlW)], = (0, ¥} ;

[wlo), w ()], = [w] (@), wl (\V)L_ =0;
(iii) The set {w (¢,)} is irreducible on & ,.

B. The Symmetric Case
We choose

2 U,

1
n! 3
‘HG”

G, = Qs(") =

which is the projection onto the symmetric compo-
nent of 3¢%. We denote the corresponding T = G
by T, define T,F = F, restrict all operators to &,
and write

“)Ts(f) = w,(f), w’;s(f) = wl(f).

For an orthonormal basis {¢,} of 3W, we define
an orthonormal basis {(¢} ¢+ - )} of F,
where n, = 0,1,2,-++,and 25;n; < ©,by

((p’;l rp';z ) = [(1211) !/It](n‘!):] 1/2
X Qs(;n1t><p1 @ .-

®¢2®(pa.--

“ PV Pyt

(each ¢, appears n, times in the tensor product).
The definition is extended so that (¢} PR
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is zero if any n; < 0. We shall also use the nota-
tion of dropping ¢; from the list if n, = 0:

(013920931042 - 0) = 1010101030404 *);.

Let @5 Py ?;, be any selection from the

basis such that i; < i,--+=,,and such that ¢,
occurs n; times, etc. Let { be any permutation of
(1,2,---,%). Then we have

ws((piw(l))' *e ws(q)i*(n)) 10)
1/2

=[£'I(”i)!] |¢"1’ ,go,-n>s.
For any subset S of 3C (), let [S] be the closed,
linear manifold generated by S. Let R[S] be the
projection onto ES{ Cook obtains the following
results: The w(¢), w] (¢) are unbounded opera-
tors with domain D{w (¢)) = D(wl(9)) =

DQ(R[¢]; 1)1/2). Let V, be the bounded, linear
extension of the transformation V"’x (<p§1 (p;"’-.- s

= (93 ¢3*+++), of F . Then V] is the bounded
linear extension of the operator
V‘;rl (qa'il (sz' .. )s = ((p';l '1‘(;7;2- e )

V,, is an isometry of the range of Q,(R[o,]; DV/2,
and

vl =lvill=lel.
Then the fields have polar decompositions:
wl (@) = V], 2,R[p]; 1)1/2,
welp) = V,[2:(R[e]}; 1) + I,]V/2,
where I, denotes the identity in &,

Lémma 1;: Let ¢ € D(N1/2), Then

0 (W = lim 29, Nw (e )y

Proof: Let
n
fn - iz_i((ppf)(p; .
Then

o () — ém,ﬂws«oawﬂ

= llo, (1 ~ Zi(fpi,f)%)tl/”
= lw (f —f vl

Qr(Asn) =

hed
T T
[i iEJ',; ceed (gil® e ® gin’Agj1® e ® gjn) wT(gil) T wT(gin)wT(gjn).” @r (gjl)
1 tan I
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= |v,. 1, 4RI, [ 1)1/2 vl
= lf =7, le,R[f—f, 1 D2yl
= lf=r, I e u; nrzyl

| f—é(go,,f)cp,” vy,

the inequality coming from Theorem 2(d), The
right-hand side is arbitrarily small for sufficiently
large n due to the completeness of {¢ i},

Cook obtains the following results:
(1) w@)wl(p)and w! ()w(p) are densely de-
fined linear operators with closures
(w0, (W (@) ™= Q,(Ye*; 1)
(@l (Ww (o)) = (@, V) + Q(p¥% 1),
to which the first is equal if and only if ¥ # 0
or ¢ = 0, the second if and only if ¢ = Ay,

(ii) The brackets [w (@), w ()], [wl(9), WI ()],
[wl(¢), w,(¥)] are densely defined, linear
transformations with the closures

([ (0), 0] "= 0 = ([w] (@), @I WP~
([wI(@), 0 ) = (¥, 9)1,

to which they are equal if and only if ¢ = ¢
=0.

(iii) If {p,} is an orthonormal basis of 3¢ (), then
the set {w (¢,)} is irreducible on &

V. EXPANSION OF N-BODY OPERATORS IN
POLYNOMIALS OF THE FIELDS

Definition 8: Let A be any closed linear opera-
tor in a Hilbert space. A domain D € D(A4) is said
to be a core for A if [Al;] = A.

Theovem 3: Let A be a uniformly normal opera-
tor on 3C ™ possessing a core of the form JN®I,
where 0l is the manifold generated by finite linear
combinations of the elements of some basis {g;}
of 3¢, Let

D=3, +9Mm

m=0

(no completion implied). Then for T =T, or T = T,
(the antisymmetric and symmetric cases),

my = Tem)m™,  and D=2 + MY,
m=0

we have

ok
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Proof: Since (A;n) exists and is normal, Q. {A;n) exists and is normal in F,. Since the P,, reduce
Qp(A;n), it suffices to prove the result in each ’ Suppose we can prove the result on the domain 9112[."’].
Because JT™ =W x JRL™:#) and U, I = Sll["'] it follows that [ is a core for all U _A ® [(m=)
U;! for all 7 € S,. We also have "

[QT(A;n)Pm , 2 UA® [mm)y-t T TmP,2 2 |(U,A® 10Ty " T(m)P,
[m) mes,, M [ 7] €S, " " ‘Sm[m] "

= 2 UA® I("‘"‘)U"lT(m)P
TIES

and

[("2 U,A® Itmmy; )‘m[m]]' T(m)Pp 2[ Y U,A® 1("'-”)0;1} T T(m)P, =Qp(4;n)P,

€S, mES
m

Since Q,(A;»)P, is normal in P, &, it has no normal extensions, Therefore M![™! is a core for
Q(A;n)P, . It remains to show

Qr(A;n)P,
Ism[m]
- T
= T
= i]E]] (8, ® c0r ® 8y, A, ® 10 B g )W (81) W (£y,) - O1(g) - wr(gy)

on [m)

Furthermore, since the decomposable elements of I[™) form a basis for JC (™) it suffices to show the
above as a b111near form between properly symmetrized decomposable elements of IMI™ of the form
|hy, by« ++ k), Where the hy, -+, k,, are a selection from the basis {g;}. We recall that for the sym-
metric and ant1symmetr1c cases there are normalization factors GT(hl, +++,k,) such that

wglhy)e . cwplk,,) 0 =0 Ry, ,hm)lhl, see ,hm)
and defining o7 = I in the symmetric case, o" in the antisymmetric case, we have

i m)=120Ry, v b)Y Y 0QU R ® @by, = lhy, " )y

TES;)y
Let | S S '">T be another such element, Consider, for m =#,the matrix elements
o0
= T<f1’ e ’fml il'”.’tf?jl'“. ,]'n(gil ® ot ® gin’Ag}lx ® Tee ® g]n) wT(gil).'. * wT(gin)

X 0r(gy,) ek (g) Tt ),

Because the f;, k, were chosen from the basis {g;}, the sums on i,,«-+,%,,7;,**+,J, have only a finite
number of nonvanlshmg terms, so the sums are well defined. Thus, usmg the commutation relations, we
obtain

Jf'g = E (gil R gin’Agj1®...® gjn)ez‘(hly""hm)_loT(fl,"',.fm)-l

il'.“ 'in’ jl'." yjn

X (0 Iw;‘(fm)' ° 'w.jr‘(f]_)wr (gil)'. : .wT(gin)w}(gjn). * 'w;' (gjl)wr(h1)° ’ 'wr(hm) [0

= 2 (& &g Ag; @ ®g; Op(hy, b)) 0 (fr, 0, f) 7

B iy

m "§ %(f(p(l),g,l)(f‘,(z),g,z) ’ (f‘,;(,,),g,-n)(’}r(gjly hw(l))' v (gfn’ h"(n))

X Q10 (fymy) W Uy )0 rguen)” * * @1 Uing) 10

Letting ¢ € S
expectation, to be

2 S yaman) Com s Bymp)-

YES m-n

. DE @ permutation of the numbers n(n + 1), ---  n(n), we evaluate the last factor, the vacuum
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We then have

1

J

fg = 61‘(h]_’ tte 9hm)_101‘ (f]_y ot 9];”_)—1

[(m —n)1]2 npes
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2, O%0F

¥ Esm—n

(m=n)
XUo® " ® for A I iy @+ ® hyy ® B yiagueryy *** O 1 yaimyy)

m!
= [n —n)1)
1

T (m —n)! nes,,

1ttt Sl QpAsn) Ry, oo

T(f:b"',fm'A@ I(m—n)lhly. L,k

" p.

* U m

It follows that for all x € Dy, the ¢ sums in the
expansion of  (4;n)x have only a finite number
of nonzero terms, and the j sums converge since
they are the basis expansion sums of the vector
Q5 (4;n)x.

This theorem is augmented by recalling that any
operator A in 3O is essentially self-adjoint if and
only if it is symmetric and has a dense set of
analytic vectors.4 From this dense set construct
an orthonormal basis {g;} of 3. Let IM denote thé
manifold of finite linear combinations of the basis.
Then IN is dense in 3D and is a core for A. Fur-
thermore if B is any densely defined, closed opera-
tor, then BB is self-adjoint and D(BTB) is a core
for B.5

VI. SOME PHYSICAL EXAMPLES

The free Hamiltonian HY> is of the form of mul-
tiplication by either w,or u + |p|2/2m,or

(42 + |pl2)1/2, where u = 0 is the mass, and
where 3@ is the space of square-integrable func-

ti?ﬂs over Rs with variable p= (p,, - ,p). 'Il‘hus
H;" is self-adjoint, and has property Ds;Q(H((, ); 1)

is self-adjoint, and the harmonic oscillator func-
tions provig? a basis of JC® which generates a
core for Hy .

1) m>T

Y o N UA®I™PU 1|k, -

) hm >T

{
The Yukawa interaction is given by the multiplica-
tion operator

(Y(foe)lx,y) =c er=3lflx)gly), ¢ >0,
in 3@ for one space dimension (I = £2(R1)), and
by

(Y(f @ 2)x,y) = cle™ ™/ ulx — y1) fix)g(y), ¢ > 0,

in JC®, for two and three space dimensions.
Y(/x — yl) is the Fourier transformation of the
function (u2 + |p!2)-1 which is bounded and
square integrable. Thus 2(Y;2) is self-adjoint.
The tensor product of harmonic oscillator func-
tions provides a basis of 3C®) which generates
a core for Y. Y has property Ds,.

The Coulomb interaction is given by the multi-
plication operator (Af ® g)(x,y) = (¢/Ix~y|)
f(x)g(y), ¢ either positive or negative. Thus A is
self-adjoint, possesses property D,,and 2(A;2) is
self-adjoint.
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The exact statistical properties of solutions to two restricted turbulent kinematic dynamo problems are
given and discussed in some detail. In view of the fact that all discussion and solutions of the turbulent
kinematic dynamo equations given so far in the literature are approximate, we believe that the present
paper, containing two exactly soluble turbulent dynamo problems, is of more than academic interest.
The method of solution is rather general and may, perhaps, be of basic interest. Further,the exact sta-
tistical solutions, which admit of regenerative dynamo action, allow approximate solutions to be com-
pared and contrasted with the exact solutions, thus outlining the regime of applicability of the approxi-

mate solutions.

I. INTRODUCTION

For many years now there has been considerable
interest in mechanisms which maintain or regene-
rate large-scale magnetic fields in nature. One

of the most attractive mechanisms for magnetic
field regeneration is a kinematic dynamo, in which
the velocity field is considered given and the re-
sulting induction equation is to be solved for the
space and time variations of the magnetic field.
Since the velocity field is, in general, an arbitrary
function of space and time,no general solution to
the kinematic dynamo equation has yet been found.
Special velocity fields which allow the induction
equation to be solved exactly have, of course, been
given (see the review by Roberts! for several such
exactly soluble models).

It was recognized quite some time ago?2,3 that a
turbulent velocity field, in combination with a large-
scale ordered sheared velocity field, produced an
extremely efficient kinematic dynamo. But in view
of the complexity of the resulting equations (see,
e.g., Lerche4) only approximate solutions have so
far been given.

More recently5~7 it has been pointed out that, even
in the absence of large-scale ordered velocity
fields, dynamo action is provided by turbulent velo-
city fields on their own,be they isotropic or not.
Once again the complexity of the equations has
been such that only approximate solutions have so
far been given. ‘

The purpose of the present paper is to present
exact statistical solutions to the kinematic dynamo
equations when the velocity field is completely
turbulent. While the two types of turbulent velocity
field to be considered are rather special, they
nevertheless illustrate several points.

First,they demonstrate that a method exists for
extracting exact statistical solutions from the tur-
bulent kinematic dynamo equations. Second, the
exact solutions obtained can be used as templates
against which one can estimate the accuracy of
any approximate treatment. Third, they illustrate
the point that the exact statistical solutions have

a character which is rather different from what
one might expect from order-of -magnitude inspec-
tion of the relevant terms in the dynamo equations.

In Sec.II we set up the basic equations to be used
in obtaining the exact statistical solutions,and we
specify the two classes of velocity turbulence we
shall be concerned with. In Secs.Ill and IV we ob-

tain the exact statistical solutions to the dynamo
equations under the two classes of velocity turbu-
lence, and we discuss the normal-mode dispersion
relation obtaining in each case for the ensemble
average magnetic field.

Finally,in Sec.V we discuss the results obtained
and suggest further lines of investigation if the
method and results given here are to be more
fully incorporated into the mainstream of present
research efforts on the structure and properties
of kinematic dynamo equations,

. BASIC EQUATIONS

Consider an infinite medium of constant resistivity
1, which is not undergoing either bulk convection
or shear, so that only a turbulent velocity 6V with
zero mean is present. Then the magnetohydrody-
namic equations for the vector potentional A are

d
(& -792)ai = cutvmnB®s, M
with the magnetic field B given by
24,
Bi(x,1) = € 5; . ()

For random velocities 6V(x, ¢), which are functions
of both space and time, Egs. (1) and (2) are, in
general, difficult to solve. Under these conditions
recourse is normally made to either the "short-
sudden™ approximation, first used by Parker? to
discuss kinematic dynamo action,or the "long-
slow" approximation, first used by Braginskii3 in
discussing kinematic dynamo action. (For a de-
tailed mathematical description of the terms
"short-sudden™ and "long-slow" we refer the
interested reader to Lerche,4 where the nature
and physical content of both approximations is
spelled out.)

More generally, we would like to obtain exact solu-
tions to Eqgs. (1) and (2) so that they can be used as
templates to measure the regime of validity of the
approximations used in discussions of kinematic
dynamo theory.2~2 We have searched the literature,
and to our knowledge there have so far been no
exact solutions given to Egs. (1) and (2) when 5V

is a random velocity field. The two situations in-
vestigated in this paper,while special, do constitute
exact statistical solutions to Egs. (1) and (2), and
as such, they are useful (albeit special) templates
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against which the approximate treatments can be
compared., They also illustrate a general tech-
nique which may perhaps be employed under more
general circumstances than considered here (see,
e.g., Lerche and Parker!? for a different applica-
tion of the technique—but within the framework of
kinematic dynamo theory).

The interesting problem at hand is the construction
of exact solutions to Egs. (1) and (2). We consider
two special classes of random velocity:

Class I: We take 6V to be a random function
only of time and independent of any spatial coor-
dinates. The basic equations take the form

9 ' 24,
(ﬁ - ﬂV2>Ai(x, £) = €3€,,,0V; (1) x, (x,8)
(3)

under
6V = 8V(2).

Class II: We take 8V to be a random function of
only one spatial coordinate, say x, and independent
of both time and the other two spatial coordinates.
The basic equations take the form

3 04,
3 nVZ).Ai(x, t) = €5€hm0V; (%) T, (x,0, (4)
under

oV = 6V(x).

Since the exact solution to Eqgs. (1) and (2) is some-~
what easier to obtain under class I velocity turbu-
lence than under class II motions, we consider it
first.

III. RANDOM VELOCITY A FUNCTION OF TIME
Spatially Fourier transform Eq.(3) with

iKex

Ai(x) t) NAi(k7 t)e (5)
Since Eq.(3) is linear and homogeneous in spatial
variables, it suffices to consider only one mode as
in Eq.(5). Then Eq.(3) takes the form

24,

o7 =~ KA, + BV (1) (kA — KA.

(6)

Let 7 = t/T,where T is the correlation time for
8V. Also write 8V = €6v so that (§V2) = €2;i.e,,
we normalize the turbulent velocity field, and then
Eq.(6) becomes

0A;

TF‘ == nTk2A; + iTebv, (A, — k;A;). ()
Now consider the probability P(7, A, &v) for finding
the combination of values A, §v at time 7. Let the
probability of finding &v on its own be described by
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the operator field £ (6v). Then P(7, A, 6v) satisfies
the spatially homogeneous equation

P d
57 =L (V)P — A P{— nTk2A,

(8)

While Eq. (8) is quite general, it is difficult to pro-
ceed further until the statistical distribution of &v
is given. For the remainder of this paper we shall
take £(6v) to represent a Gaussian velocity dis-
tribution in each component of §v, with the same
correlation time and intensity in each component.
Thenll

+iTedv; (k, A, — R, A,)} .

a2p

0
L(pv)P = — (6v,P) + —— , 9
(ov) aau,.( iP) 2002 (9

and Eq. (8) becomes
oP 0 92P 0
— = — (v, P) + —
o7 861),-( ot 96v,2 04;

x {P[—nTr24, + iTeby, (kA — AN, (10)

The first terms on the right-hand side of Eq. (10}
represent the assumption that the probability dis-
tribution over 6v alone is the Gaussian

exp(— 36v,0v;).

The initial values of A are sufficient to determine

the solution of (10). Denote them by A(k, 0), so that
at 7 = 0 the probability distribution is

P(7 = 0) = (27)73/2 exp(— } 6v+0v)5[A— Ak, 0)].
(11)
To proceed with the solution of Eq.(10), define
the quantities
R, (7,6v) = anPd3A, o =x,Y5,2,
so that the kth Fourier mode of the ensemble
average vector potential {A) is

(&) = [R(7,6v)d36v, (12)
with

(B) = ik x (A). (13)
Then Eq. (8) yields
R 3 2R
== Th (OuBa) + ﬁ)%

—nk2TR, + iTebv;(k,R; —k;R,), (14)

with the initial conditions

R, (7=0,6v) = A, (k, 0)(2m)"3/2 exp(— % Sv+ov).
(15)
The coefficients in Eq. (14) are independent of 7

so that the solutions have an exponential time de-
pendence exp(o7). Note that all three (o =x,y,2)
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of Eq.(14) are homogeneous in R. Hence they have
a solution if, and only if, some dispersion relation
is satisfied. Our task is to obtain the dispersion
relation.

It is convenient to expand R in the normal modes
¥, of the homogeneous equation

azy, dxy,)
which are
¥, (x) = exp(— z x2) H,(2-1/2x), (17)

where H, is the nth Hermite polynomial. Further,
from the recurrence relation for Hermite poly -
nomials we have

2125y, (x) = ¢,,, ) + 20y, _ (x). (18)

Then we write

0
R, (7,6v) = e’ 2

n,m,1=0

Cflo:rzl wn(avx) ‘Pm (Gvy) wl (61.)2).
(19)

Insertion of Eq.(19) into Eq.(14) and equating co-
efficients of ¥, y,, ¥, gives the three equations

C(a)

nml

[0+ (MR2T +n + m + I)]

+2(n +1)C¥

n+l,m,l

= iTea~v2{k [C*

n-1,m,l

+2(m +1)CY

n,m+11

+c¥

n,m-1,1

+c¥

n,m,il-1

+2(+1CcY

n,m,l+1

+2m+1Cc )

n+l,m,i

- kx [Crfa)

-1,m,1

(o)
— ky [C

n,m-1,1

+2(m +1)CL9, ]

n,m+1,1

- kz[c o + 2(l + l)crftxrr)t,lu]}y

n,m,l-1

a=x,9,2. (20)
It has been shown elsewherel0 that the determi-
nant of the coefficients of Eq.(20) gives the dis-
persion relation. The determinant is, as usual,
infinite and divergent. However, expanding the
determinant about the upper left-hand corner

gives a series that is asymptotically convergent
for small Tek < 1. [The reader who prefers to
solve the homogeneous finite-difference equation (20)
by the more rigorous differential equation method
given in Lerche and Parker10 is encouraged to do
so. We point out here that for T€ek < 1 the results
from both the asymptotic determinant method and
the differential equation method agree exactly.]

Start at the upper left-hand corner with the set of
coefficients obeying n + m + [ = 0;then add in the
set obeyingn + m + =1, etc. Toordern + m + [
= 1 the resulting equations are

LERCHE

(a) .
(0 + Mk2T) Cip = iTe2V2 [k, (C{Ty + €&y + &)

(o)
— (-, C150 + &, CGi + R, Co3))], 1)
9 (0 + 1+ nk2T)=iTe2-1/2 (B C o — b C 2,
(22)
Co2y (0 + 1 + Mk2T) =iTe2 172 (k, C oy — &, Cood),
(23)

Céo(‘,)l(o +1 +nk2T)=iTe2"1/2 (kaCO(f))o—— szo(g()) ).

(24)
Now the original free decay solution (valid when
€ =0)is

o =—nk2T. (25)

The coefficients to order n +m + [ = 1 give the
first correction to the free decay rate as

0 =—nk2T — k2T2€2(0 + 1 + nk2T)"1, (26)
There is now an additional root
o+1+nk2T =0, (27)

as follows from Egs. (22) (with o = x), (23) (with
a = »), and (24) (with a = 2).

Had we evaluated the determinant to order
n +m + | = 2,there would appear still another
root:

o+ 2 +nk2T =0,

etc. The extra roots all converge to the original
roots in the limit 7 — <. The decay of these extra
roots is faster than the original roots, so we will
not consider them further in the present problem.

The modified free decay mode [Eq. (26)] is now

o=-—k2T(n + €27), (28)
implying that the turbulent diffusivity brought about
by the random (in time) velocity field increases the
rate of decay of the mean magnetic field over that
which would obtain in its absence. Note that this is
by no means the same as the rate of decay of the
mean magnetic energy being different in the pre-
sence of turbulent time-dependent velocity fluctua-
tions and in their absence. In point of fact, the rate
of decay of (B2) is at precisely the rate 2k2n
obtaining when € = 0. We refer the interested
reader to Appendix A where we discuss this and
other points which appear somewhat anomalous

at first sight.

For the present, so as not to break the train of the
argument, we content ourselves by noting that the
corrections to the free decay mode, valid in

Tek < 1,indicate that the mean magnetic field
decays at a faster rate in the presence of velocity
turbulence than in its absence.
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dzA dA
IV. RANDOM VELOCITY A FUNCTION OF x aa,—r-2 T _ eﬁvx(ik 4L __,)
Spatially Fourier transform Eq.(4) in y and z with X
A(x, f) ~ A(k,x) exp(ik, *x, + ot), + €bv, (iky A, — thA,), (31)
d2A . dA
where QA,—nL"2 —~ = ebv, (ik,A, — L™1 =2
dxz2 dX
=(0,y,2), k —(0) ,k ))
L Yy 4 . .
+ €dv, (ik, A, — ik A,), (32)
to obtain ,
d2A; 0A; A, where
(o + nk2)A; — 1 = 6V;x) <—’ —5——’> s (29)
dx? oK, K; Q=0+ k2.
where
3 d Note that Eqgs.(30)-(32) are second order in X, and
5K ( s zk ik ) so each requires two boundary conditions for a de-
terministic solution. This is to be compared with

the situation in Sec.IlI, where the vector equation
(7) was first order and so required only three boun-
dary conditions for a determined solution. We
might expect that the extra degree of freedom here
will complicate the probability equation governing

Let X = x/L, where L is the correlation length
associated with 6V, and normalize 6V to €6v so
that {(6V2) = €2, Then, writing out the components
of Eq.(29), we have

d2A dAa the evolution of A(x),and this is in fact the case.l?
QA,—nL"2 —Z =€ <L 122 ik A
dx? Set
- dA, dA, dA,
+€51)ZL 1 ax —ik,A,), (30) a:LD{’ B:EX—, y:;)—(—, (33)

when Eqs. (30)-(32) become

da

% =QL2n7 1A, — eL2n" 100, BL™! — ik, A) — eL2n~ 160, (yL™1 — ik,A ), (34)
96 _ QL2y-1A, — eL2n~16u, (ik,A, — BL-1) — eL2n~16v, (ik A, — ik A

%= n~1A, — e L2y~ 1y, (ik,A, — BL™1) — e L2y 10u, (ik, A, — ik A,), (35)
&y = QL2 14, — L2010, (ik,A, — yL1) — L2100, (ik,4, — ik,A,). (36)

Proceeding as in Sec.III we see that the probability P(X, 6v, A, dA/dX) of finding the values 6v, A, and
dA/dX at position X satisfies the stationary probability equation

BP BZP 9

——{P[QL2n~2A, — eL2n~1 (BL"! — ik A )ov, — € L2~ 1 (yL~1 — ik, A )ov
o y 2 x/V Yz

- _aE {P (L2714, — eL2n16u, (ik,A, — BL™1) — e L2y~ 10, (ik, A, — ik,A))]}

-~ % {P [2L2n"14, — L2n160, (ik,A, — yL1) — e L2n16v, (ik,A,— ik, A,)]}, (37)
with the boundary conditions at X = 0,
P(X = 0) = (21)-3/2 exp(— 460%) 6[A— Alk, 0)] of( 22 — 28| ] (38)
Define
= fA Pd3Ada d8dy, a=x,y,z2, (39)
a=ux,9,2z, (40)

dX
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so that

(&) = [ Ra%v,{dA/dX) = [ Qd3ov;

then from Eq.(37) we obtain the six linear coupled homogeneous equations:

a a azRq
X - m (aviRa) + 3602 T Qs a=x,Y,z, (41)
7

0Q:_ o 92Q, 2p-1 2p-1 -1 ; -1 ;

X — ady; (OUiQx) + 6'1)12 +QLE™IR, — el [6vy (L Qy—Zkny) * o, (L Q.— zszx)]’ (42)

99, 9 aZQ? 29-1 2p~1 ; -1 i i

X = 35y 0u@y) + —- T QLR — L2y [bv, (ik,R, — L71Q,) + bv, (ik,R, — ik,R))], (43)
i 35111-'

Q. 2 L9 oaip 21 R — 110 ) + 60 (ib R — i

BT—W(M‘Q") o2 QL2n~IR, — eL?n71 [by, (ik,R, — L71Q,) + bv, (ik,R,— ik,R,)]. (44)

i

As in Sec. lII we make use of the complete normal-mode set ¥, to write
o0

Ry=e™* T R W, (60,0, (60,) ¥, (50,), (452)
n oM al=
Q=" T Q¥ 00,9, (00,)¥, (0. (45b)

Inserting Egs. (45) into Eqs.(41)-(44) and equating coefficients of Y ¥ ¥, gives

R,f:’, (ik +tn+m+ l)=Qf§,,)z, a=x,3,2, (46)
R - - - — )
QUi +n+ m + 1) = QLR — LAV LAY, ]+ 2m +1Q Py — i RED

2 + DRG]+ IO s + 20+ 1@ o) = RS, 420+ DRY, L, @

n,m,l+1

QY ik +n+m+ 1) =QL2n 1R — € 12271/2y-1{i [R",

n~1,m,1

+2m+ )R - L1

n+l,m,l

X[Q i 20 +1)QN 1+ k[RE 420+ 1RD,, J— R . +2(+ )R

nvl,m,l n+l,m,l n,m,l-1 n,m,l+1 n, _1+1] }(,48)

(2)

Qe 4+ m + D) = LIRS, — L3V GIRS, Ly 4 2+ DR )~ 1[0
() . (» () ] () (2)
+ 2(7! + I)Q:rl.m,l] + Zkz [Rn,};n—l.l + 2(m + I)annﬂ,l] - Zky [Rn.m.-l.l + Z(m + I)Rn,zmﬂ,l]}' (49)
|

Notethat Eqs. (46)~ (49) are linear and homogeneous (1 + iK)Rg’(‘))1 = Q((>°6)1’ a=x,9,z, (53)
and so possess. a solution if, and only if, a disper~
sion relation is satisfied. Once again our task is O 2 1p® 1291721
to obtain the dispersion relation. Again note that  °*©000 QL( n Rooo N 22 " o
the determinant formed from the coefficients is X (L1QoYo — ik, Rgio + L1Qg01 — ik,RG51),
infinite and divergent;but for eL2(k2 + x2L-2)1/2 (54)
< 7 the determinant is asymptotically convergent.
So we solve by iteration around the upper left- k0 _ or12p-1RW _ c1291/2p-1
hand corner of the determinant. To order n + k@ goo = & wn 0(23) (Z) T
m + 1 =1 we have X [ik(R1oo T Roo1) — L1100 — 1%, R401)s
) (a) (55)
ikR =Q o =x9,2 (50)

000 ( )OOO’ o [ Bad iKQf)z())O — QLG_lR(g:‘)O _ €L221/2T’_1

. a) o — . 51 ) _ - @
(1 + ZK)RIOO QIOO’ o Xy, ¥V, 2, ( ) X [Zkz(R(;z)o +R(()y;0)“'L 1Q(;Z)0_zknglo ,

(1 + KRG, = Qoror @ =%,9,2, (52) (56)
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1 +i)QY, = aL2n 1S, (57)
1+ Q%) = aL2y-1RY,, — eL22-1/2p1

X (L_IQ%?)O - ikyR%Z)O)’ (58)
a+ Z'K)Q%z)l = QL Zn'lR%)Ol — el22-1/29-1

X (L1Q%00 — ik, R300), (59)
(1 + i)Q%% = QL271RY)  — eL22-1/291

x (ik, Ry, — L1690, (60)
A+ QY , = L2 1RY) | (61)
(1 + )@Y, = aL2n-1RY), — eL22-1/291

x (ik Ry, — ik, R30), (62)
(1 + Q% | = eLen1RG)  — er22-1/2971

X (ikR 00 — L™1Q500); (63)
(1 + 0%, = @L2g 1R, | — eL22-1/29-1

x (ik, RSy, — ik REY ), (64)
(1 +i0)Q%), = eL2n-1RS), . (65)

By inspection of Egs. (50)-(65) we see that they
consist of two decoupled sets of equations. The
first set, obtained from equations (51), (53), (57),
(61), and (65) has a solution if, and only if,

(1 + ik)2 = QL2n™1, (66)
which gives
0 = 2inkL=2 — (k2 + L-2(k2 — 1)]. (67)

This represents an additional mode which reduces
to the original mode ¢ = — 742 in the limit L— o,
For finite L, 2, L < 1,and « <1, it represents a
growing, progressive wave. Later we shall com-
pare it with the original mode o = — nk2 as modi-
fied by the presence of the turbulent velocity field.
Consider then the other modes. Assume that Eq.
(67) is not satisfied. Then

(2)

R(f())o = Rf)y:io = RE)Z(§1 = Q(lxéo = Qéyl)o = Qo1 = O,
and Egs. (50)—-(65) reduce to
DyR$yo = — 2iA2Dp[k (kLR — ik RS) )

+ ky(ikL=1RGY o — ik,RG00)], (68)
DoR$po = — 282D7L[L-(1 + ix) (ik RGg,

. ) . . (z) R )
- ’KL_lRo%o) t ik, (lkyROZOO - lsz(%o)], (69)
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@ _ 177 - - N p&)
DyRoo =— 2A2D7A[L71(1 + ik) (ik Ryg

— iKLIRG) ) + ik (iR, RS — ik RS )], (70)
where

A =eL2/(2V2n), D; =—QL2p71 + (1 + ik)? (#0),

Dy =— QL2 1 — k2,

The determinant formed from the coefficients of
R in Eqgs. (68)-(70) is the dispersion relation to
order n + m + I =1, valid for A(k2 + k2L-2)1/2
<1,

For small values of A(k% + k2L~2)1/2 the off-
diagonal terms can be neglected in the deter-
minant, and then we have three decoupled modes:

(@) Dy +2A2k2D71 =0, for RS, (11)
(b) D, +242D71(k2 + k2L72 — ikL™2) =0,

for R$)., (72)
(¢) Dy +2A2D71(k2 + k2L72 — ik L72) = 0,

for R(()ZO)O. (73)

So what was a triply degenerate mode (D3 = 0) in
the absence of turbulent velocity fluctuations has
the degeneracy lifted in the presence of velocity
turbulence. Note further that it suffices to con-
sider only the modes associated with R((ﬁ))o and

R(()yo)o since the mode for R<()zo)o is identical to that

for RW

ooo With the replacement k& — k&, &k, = k.

y

A. The “Parallel” Mode (RS).)

From Eq. (71) we have

oL2n1 + (R2L2 + k2) = 21/2¢2[4p2 72
X [(1 +ik)2 — gL2n~1 — k2 [2]71, (74)

and, with €L2n~1(k2 + x2L72)1/2 K 1, Eq. (74) is

oL2n1 >~ — (k2 + R2L2) + 21/2¢24p2p2
x (1 + 2ik)~1. (75)

With k/L = k and k2 = k2 + k2, we have

0 =— n[k2 — 21/2e2L2k2972(1 + 2ik L)"1],  (76)

which is valid when e L2k K< 1.

Congsider Eq. (76) under the long-wavelength
approximation L < 1:

0 > — (k2 — 21/2¢212p27"2), (17)
With &, = k sing, Eq. (77) is

o =~ — nk2(1 — 21/2¢21,2972 gin2g). (78)
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Now note that if €L21/4> g (which from

€L2k K 7 implies 2L < 1), then modes with

| sing| > n/(21/4¢L) are growing and hence re-
present regenerative dynamo action. For

€L21/4 < 7, all parallel long-wavelength modes
are degenerative. In mathematical respects Eq.
(78) has a structure very similar to the Cerenkov
radiation condition, where for v > ¢/n, radiation
occurs for cosg > c/nv, but for v < ¢/n, no radia-
tion occurs.

B. The “Perpendicular” Modes (Rooo» 8’30)

As remarked ‘earlier it is sufficient to consider
only one of the perpendicular modes. In particular,
take Eq. (72). This gives (with eL2k < 1)

o =—nk2 [1 — 21/2¢2L2972(1 + 24k, L)1
ik

k2 ]
x(1-5 -2,
k2 k2L

Here there are two long-wavelength situations to
investigate (k“ = 0, ku # 0):

(79

1. k=0
For k, L <€ 1,Eq. (79) reduces to
0 = —nk3[1 — 21/2¢22p72(1 — k2/k2)], (80)

which with k =k, cosy and k, = k, sing gives
regeneratlve modes when

€L21/4 > q, (81a)
and

| sing| > n/(21/4€L). (81b)
2. k %0
For kL K 1, Eq. (79) reduces to
0 =— nk2[1 — 21/2¢2L29~2(1 — cos2¢ sin24

— ik, /k2L)]. (82)

In this case o has both real and imaginary parts
given by
Im(o) =— k,€221/2Ln71, (83a)
Re(0) = — nk2[1 — 21/2¢2[22(1 — cos2¢ sin26)],
{83b)

corresponding to a progressive dynamo wave which
propagates and grows if both | cose sing| <

[1 —n22-1/2(eL)"2]1/2 and inequality (81a) are
satisfied, and which otherwise decays The phase
speed of 'the wave is €2121/2/y in the positive

x direction.

The perpendicular mode (73) has the same pro-
perties as the perpendicular mode given by (72)
provided that cose (sing) replaces sing (cosg)
throughout.
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Altogether, then, the long-wavelength (kLK 1)
perpendicular modes give regenerative dynamo
action whenever eL2k < 7 and 7 < €L 21/4,and
then there is a regenerative mode when e1ther
|sing sing |or |sind cose| is less than

(1 —n22-1/2(eL)-2]1/2,

The long-wavelength parallel mode gives re-
generative dynamo action when |sing| >
n/(21/4¢L).

Consider now the "new" mode given by Eq. (67),
which does not exist in the absence of a turbulent
velocity field. When kL < 1, it satisfies
o =nL~2 + 2nk, L1, (84)
which is a progressive wave whose growth time is
much faster than the unstable parallel and per-
pendicular modes if eLk2 < 7. If we set eLk2 =17,
which violates the conditions under which the
growth rates were calculated, but which will serve
to illustrate the point, the maximum growth rate
of the parallel and perpendicular modes is O(nL~2).
This indicates that for high-intensity turbulence
(eLk2 2 7) the asymptotic solution to the finite-
difference equations is probably becoming un-
reliable. However, it also illustrates that the
growth of the new mode is faster than the growth
of the modified original modes under weak velocity
turbulence (e Lk2 < 7).

But the new mode associated with Q(*f)0 etc., does
not contribute to either the ensemble average
magnetic field or to the ensemble average vector
potential, as can readily be seen by integrating
Eq. (45) over velocity d36v. Accordingly, we can
ignore it for the remainder of this paper.

Altogether, then, it is the parallel and perpendicular
modes which control the response of the mean
magnetic field to the spatial velocity turbulence,
and these admit of regenerative dynamo action
under "weak" velocity turbulence.

V. DISCUSSION

In this paper we have set up exact statistical
equations describing the evolution of a magnetic
field under both resistive decay and turbulent
velocity fluctuations in an infinite medium. It was
shown that if the turbulent velocity was a function
only of one spatial coordinate or of time alone, the
equations could be solved statistically exactly.
For weak turbulence.we obtained the dispersion
relations relating the growth of the ensemble
average magnetic field to both the resistivity and
the effective intensity of the velocity turbulence.

When the velocity turbulence is a function only of
time, but isotropically distributed (at ¢ = 0), we
showed (Sec. ITI) that the mean magnetic field
always decays faster than under resistivity alone.
We pointed out (and prove in Appendix A) that this
is not the same as stating that the mean magnetic
energy is decaying faster than under free resis-
tive decay. In fact, the mean magnetic energy
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decays at just the free resistive decay rate (but
see Appendix A).

When the velocity turbulence is a function only of
x, we showed (Sec. IV) that the degeneracy in the
dispersion of the modes describing the ensemble
average magnetic is lifted under "weak" velocity
turbulence. Further, in the limit of long wave-
lengths, we showed that there exist regenerative
dynamo modes when the resistivity is sufficiently
small (see also Appendix B).

We have done the present calculations for two
reasons. First, because there are no exact
statistical solutions available in the literature.

So our computations, while specialized to specific
dependences of the turbulent velocity field on
coordinates and time, relieve this situation. They
further indicate a general method which is,
perhaps, capable of being used under wider classes
of velocity turbulence than considered here.
Second, the dispersion relations describing the
normal modes of the ensemble average magnetic
field indicate some unexpected properties which
are not brought to light by considerations based on
approximate treatments of the statistical kine-
matic dynamo equations. In particular, we believe
that the anomalously rapid decay of the mean
magnetic field under time-dependent velocity tur-
bulence, and the Cerenkov-like structure of the
normal modes of the mean magnetic field under
space-dependent velocity turbulence, are pheno-
mena deserving of a more detailed investigation
than has been given in this first crude analysis of
the exact statistical properties of the dynamo
equations (1) and (2).

We would be extremely interested in seeing com-
putations which make use of the statistical pro-
perties of the turbulence under physically more
realistic approximations than we have done in this
first demonstration of exact statistical solutions
to the kinematic dynamo equations.
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APPENDIX A

Consider Eq. (1) when 6§V is a random function of
time. Take the curl of Eq. (1), giving

B (6V()+v)B = nv2B. (A1)

Take the spatial Fourier transform of Eq. (Al)
with

B(x, t) ~ B(k, t)eik-x

to obtain

a__:_B;‘; D 4 k-sV(OB(k, 1) = — nk2B(, £).  (A2)
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To demonstrate that the energy stored in each
mode B(k, #) declines at the free decay rate,
multiply Eq. (A2) by B(k, £)*, complex conjugate the
resulting equation, and then add to obtain

2|B|2

—_— 2 2
5~ = 2nk B2,

(A3)

where |B|2 = B(k, #)- B(k, #)*.

From Eq. (A3) we see that the energy «|B|2
stored in any mode declines as time progresses
at a rate 2n7k2. And this is true irrespective of
the value of the random velocity 5V(#).

On the other hand, consider now the behavior of
B(k,t). Equation (A2) has the solution

B(k, t) = B(k,0) exp(— nk2{) exp<i fo tk-ﬁv(t')dt’) ,
(A4)

so that the phase of any mode of B(k, ¢) is random
when 6V is random. If the probability of finding a
particular velocity 6V is Gaussian at £ = 0 and
thereafter satisfies a homogeneous probability
equation of the Uhlenbeck and Ornsteinl? type, the
mean value of

exp(ifjbﬁV(t’)dt’)

weighted with respect to the probability of finding
5V is well known (see, e.g., Ref. 13) to be « exp
(— k2€27Tt) so that

(B(k, t)) < exp[— k2t(n + €2T)]. (A5,
This behavior of the average magnetic field is
precisely the same as the behavior of the randomly
modulated simple harmonic oscillator. The
increase in the damping rate over that obtaining
in the absence of turbulent velocity fluctuations is
due to phase incoherence.

It is also obvious by inspection of Eq. (A4) that
B(k, t)*B(k, t)* = B(k,0)*B(k,0)* exp(— 2nk2t),

which is independent of §V(f), so that once again
we obtain the rate of decay of magnetic field
energy progressing at the free decay rate.

This illustrates that the energy stored in the mag-
netic field is declining more slowly than the square
of the mean field, indicating that, after a time
O[k™2(n + €2T)"1], the magnetic field is essentially
all disordered. This type of phase interference
damping occurs in nearly all random propagation
problems and is to be ascribed to a phase inter-
ference similar to the Landau damping occurring
in plasma physics problems (see, e.g., Ref. 14).

An alternative way of picturing the damping is
considering a set of waves which start in step.
Then, as each wave moves under its velocity field,
fiducial marks on each wave get out of step.

After a time O[k™2(n + €2T)~1], the fiducial marks
are essentially nearly uniformly spread over a



1866 I

wavelength so that the average field (proportional
to the number of fiducial marks in step with each
other) has declined. It is in this sense that the
ensemble average field is said to damp.

APPENDIX B

The possibility exists that the exact statistical
generation of dynamo action discussed in the text
is due to sources and sinks of V*5v (but see Ref.
12). We demonstrate here that one obtains
essentially the same regenerative dynamo action

when the turbulent velocity field is incompressible.

Let 6V = (o, 62, (x), 6v,(x)), satisfying V-6V = 0.
Then, followmg the procedure outlined in the text,
we obtain the equation for P, the probability of
finding évy, 6v,, A, and dA/dX at position X, as

P

] o2p
= 64,P) +
ox ~ 6v, P + 662 5vz(v’P) 26 02
d
- a—;x- (LaP)— éTy (LgP) — 34, (LyP)
9 L L
-3 [P(—n—(o +nk2)A, — —ni(Bévy + yb2,)
LeAx(kyévy + kzbvz))]
0 L €L :
— % [P (ﬁ(o +nk2)A, — i -n—bvz(kyAz - szy,)):I
0. L .eL
— 5 [P (;1-(0 + nk2)A, + 1—5—5 v, (kyA‘z - szy) )]
(B1)
Define
RW = [A Pd3Adadgdy,
(B2)
QW = [(a, B, y)Pd3A dadpdy,
and, as in the text, write
o0
RW — eiKXmgz)o R,E';Z‘I’n B, 0v,), (B3)
o0
QW = eixxm'go QWy By, W, (6v,). (B4)

Then, following the same procedure as outlined in
the text, we obtain

(ixk +n + mRLY = L, oa==x1,z2, (B5)

ik +n + m)QW = (L/n)o + nk2)R$) — (Le/21/27)

nm

+2(n + 1)QY) ]

n+l,m

QX

— (Le/21/29)[Q%8), 4 + 2(m+ 1)Q%2),.,]

n,m+1

+ (Le/212qRk [RE) , + 2(n +

n1,m

DRE ]

+ kz[R (x) (B6)

n,m-

1+ 20m + DRE LT
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Gk +n +mQY = (L/)o + nk2RS)

_ (ieL/21/217)
X [k, (R{D, y + 2(m + DR, ;)

—_ k (R(y)

n,m-

1 + 2(”’1 + I)R(ym+1)] (B7)

(ix +n + m)QL2 = (L/n)(o + nk2)RE2)
+ (ieL/21/2p)
X [k (RE2)

n-1,m

~ k(R . +2( + DRE, )]

n+l,m

+2(n + )R, )

n+l,m

(B8)

As usual, the determinant of the coefficients gives
the dispersion relation. It is infinite and divergent,
but it is asymptotically convergent for small
values of

L2en~1(k2 + k2L72)12 K 1,

Start at the upper left-hand corner of the deter-
minant with the set of coefficients obeying

n + m = 0, then add in the set with n + m = 1, etc.
To order n + m = 1, we obtain two decoupled sets
of equat1ons, the first set from Q%2 R(()ll), Q(y) ,

and R10 have a solution if the dispersion relation

nlik + 1)2 = L2(0 + nk2) (B9)

is satisfied. This representa a "new" mode not
encountered when L~1 - 0. But Q(z) RW R(y)

01’

and Q, ;%) do not contribute to either the mean
field (A) or to {(dA/dX), as can be seen by integrat-
ing Eqgs. (B3) and (B4) with respect to dbv,d6v,.
Consequently, we can neglect the new mode for the
purposes of discussing the normal modes of the
ensemble average magnetic field.
After some algebra the remaining set of equations
reduces to (to order n + m = 1)
R¥ ik + 1)2L-1 — Ly~1(o + nk2)]

= (Le/21/2n)(ik RSy — ikL7IRGY), (B10)
R((ﬁ)[ix +1)2L71 — Ly~Y(o + nk?2)]

= (Le/21/2n)(ik RS — ik L-IRSD), (B11)
Rk + 1)2L1 — Ly~1(c + nk2)]

= — (eL/212n)(k RS0 — kRS0, (B12)

R [Gx + 1)2L71 — Ln~1(o + nk2)]

= (eL/21/2n)(k RS — KRG, (B13)
RO k2L-1— Lyn=1(o + nk?)]

= (eL21/2/n)(k Ry + kRGY), (B14)
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(”)[ k2L™1 — Ln~1l(o + nk2)]
= ie(L212 /RS, (B15)
R k2L~1 — Ly (o + k)]
= GeL21/2/)k R, (B16)
From Eqs. (B12) and (B13) we have
R +RY =, (B17)

which, when used in Eqs (B15) and (B16), gives

RRSY + kRS = 0. (B18)

This leads to the dispersion of R((’,% being com-

pletely decoupled from the dispersion in Ry and
oo- In the present, incompressible, case the dis-

persion relatjons for R(()0 and for the coupled

pair R(()yg,R((,O are the same:

k2L-2 + L(o + nk2)/n = €2L2k27"1

x [@x +1)2L-1 — Ly~1(0 + nk2]-1 (B19)
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With &

= kL-1 and k2 = k2 + k%, we obtain, in
L < 1

,the approximate form of Eq. (B19) as
o =—nk? + (e2L2n~2 — 1)nk2(1 — 2ik L). (B20)

Note that Eq. (B20) has the same basic structure
as Eq. (83b).

For €L > 7, Eq.(B20) gives long-wavelength re-
generative dynamo action when
k, > k,(e2L2n~2 — 1)-1/2 (B21)

while for €L < 7 all long-wavelength modes are
degenerative.

This illustrates, by direct computation, that the
exact statistical regenerative dynamo action com-
puted in the text is nof due to sources and sinks
of V+5V, for we obtain here essentially the same
results using incompressible velocity turbulence
as we obtained in the text using compressible
velocity turbulence.
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action discussed here is nof dependent on the nonzero nature
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I. INTRODUCTION

In an earlier paper! we gave sufficient conditions
(Theorems III and IV of Ref. 1) for exponential
instability of the gyroscopic Lagrangian system

Pt + At +HE(£) =0 (1)
for the finite-dimensional problem,i.e., for the
case where H,iA,and P (>>0) were linear Hermi-
tian operators in a finite-dimensional Hilbert
space E,. In this article we extend these results
to a certain class of infinite-dimensional systems,

namely, the case where P (>>0) and iA are Her-
mitian operators in a separable Hilbert space E,
with H possessing a compact Hermitian inverse
H™1 in E, The results we obtain are directly appli-
cable to a large number of problems concerning
the stability of rotating elastic bodies; as an exam-
ple we consider the stability of a thin, rotating
annular disk, We also briefly consider a simple
but useful special case of Eq.(1) where P is a
positive real-valued function of x fora=x < b,A
is a real, formally antisymmetric¢ first-order
differential operator defined on a dense subspace
of E = Lyla,b],H is a real second-order formally
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(”)[ k2L™1 — Ln~1l(o + nk2)]
= ie(L212 /RS, (B15)
R k2L~1 — Ly (o + k)]
= GeL21/2/)k R, (B16)
From Eqs. (B12) and (B13) we have
R +RY =, (B17)

which, when used in Eqs (B15) and (B16), gives

RRSY + kRS = 0. (B18)

This leads to the dispersion of R((’,% being com-

pletely decoupled from the dispersion in Ry and
oo- In the present, incompressible, case the dis-

persion relatjons for R(()0 and for the coupled

pair R(()yg,R((,O are the same:

k2L-2 + L(o + nk2)/n = €2L2k27"1

x [@x +1)2L-1 — Ly~1(0 + nk2]-1 (B19)
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With &

= kL-1 and k2 = k2 + k%, we obtain, in
L < 1

,the approximate form of Eq. (B19) as
o =—nk? + (e2L2n~2 — 1)nk2(1 — 2ik L). (B20)

Note that Eq. (B20) has the same basic structure
as Eq. (83b).

For €L > 7, Eq.(B20) gives long-wavelength re-
generative dynamo action when
k, > k,(e2L2n~2 — 1)-1/2 (B21)

while for €L < 7 all long-wavelength modes are
degenerative.

This illustrates, by direct computation, that the
exact statistical regenerative dynamo action com-
puted in the text is nof due to sources and sinks
of V+5V, for we obtain here essentially the same
results using incompressible velocity turbulence
as we obtained in the text using compressible
velocity turbulence.
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I. INTRODUCTION

In an earlier paper! we gave sufficient conditions
(Theorems III and IV of Ref. 1) for exponential
instability of the gyroscopic Lagrangian system

Pt + At +HE(£) =0 (1)
for the finite-dimensional problem,i.e., for the
case where H,iA,and P (>>0) were linear Hermi-
tian operators in a finite-dimensional Hilbert
space E,. In this article we extend these results
to a certain class of infinite-dimensional systems,

namely, the case where P (>>0) and iA are Her-
mitian operators in a separable Hilbert space E,
with H possessing a compact Hermitian inverse
H™1 in E, The results we obtain are directly appli-
cable to a large number of problems concerning
the stability of rotating elastic bodies; as an exam-
ple we consider the stability of a thin, rotating
annular disk, We also briefly consider a simple
but useful special case of Eq.(1) where P is a
positive real-valued function of x fora=x < b,A
is a real, formally antisymmetric¢ first-order
differential operator defined on a dense subspace
of E = Lyla,b],H is a real second-order formally
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symmetric differential operator defined on a
dense subspace of E, and £ = £ (x, t) vanishes at
the endpoints of [a,b]. The results obtained are
used to discuss the stability of steady flow of a
warm, one-dimensional, electron plasma,

II. SUFFICIENT CONDITIONS FOR INSTABILITY

The extension of previous finite-dimensional re-
sults (Theorems III and IV of Ref.1) to the infinite-
dimensional case is accomplished in the theorems
of this section. The infinite~dimensional problems
are effectively made finite-dimensional by means
of the fact that a completely continuous (i.e., com-
pact) operator can be uniformly approximated by

a finite-dimensional operator,

Theorem 1: Assume the following hypothesis:

(a) Let Z be a compact subset of the complex
plane.

(b) For eachw € Z, let C, be a linear, completely
continuous operator on and into the separable
Hilbert space E, with continuous w dependence
(in the operator norm topology) on Z.
Let {¢,} ., be a complete orthonormal system
in E, and let P, be the projector onto the sub-
space E, spanned by ¢, @g, .., ¢y,
Suppose that given any N > 0, there exists an
integer n >N, an o(n) € Z,and an n(n) € E,,
n # 0,such that n = P,C 7.

(c)

(d)

Conclusion: For some © € Z and a nonzero
t € E,we have { = Ct.

Proof: We first show that

Ilz-c )l

2
el &

wEZ, LCE

Let € > 0. The compactness of Z, the continuity

of C on Z,and the fact that C  is completely con-
tinuous for each w € Z imply the existence of a
real number N_, with the following property: For
all integers m =N, andallw € Z, |P C P, —C |
< €. By Theorem 1(d) there existn >N ,a € Z,
and 1 € E,, with llnll = 1 satisfying the equation
I—-p,LC,)n=0. Now

I —c )l _ Iz —c ol
&l linll

+ Il (P,C.P,

inf =l —P”Ca'n”
weZ, EEE

—-C.) nll <e,

which proves Eq.(2). Let F(«w)= infg[lIl(I—C )t/
fi£]|] for w €Z. Since C is continuous in w on Z,
F(w) is a real-valued, nonnegative, continuous func-
tion of w on Z and therefore assumes its minimum
for some Q € Z. By Eq.(2), this minimum is zero,
ie.,inf (I — Cg) €112/1£]12] = 0. Now (I — Co)tll2

= (&, &) — (£, Ht), where Hy = C) + Cy — ClC,
and C}, is the adjoint of C,. The operator H is
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completely continuous and Hermitian, so that

s “(1_‘(/‘9)5“2 . (nggg)
0-—1nfE———————Ilgllz =1nfE<1——(—-—5—€’g )
(&, Hgt)

=1-— sup; NN

implies the existence of a { € E, ||t!| = 1, such
that H,{ = ¢. Therefore ||(I —C)t||2 =

(§9 (I- CD(I_ CQ)C) = (Cv [I— Hn]g) = 0, s0 that
€ = C ¢, and the proof is complete.

A few definitions will be convenient in the sequel.
A linear operator L with domain D; and range R,
in the separable Hilbert space E will be called “sim-
ple” provided the following conditions are satisfied:
(L1) D, = E( denotes closure); (L2)R , = E;
(L3) (n, L) = (Ln,¢) forallpand { €D ;; (L4) L
has a completely continuous inverse L~! on and
into E, such that L=1Ln = 5 for all n € D, (which
implies that LL~1¢ = ¢ for all { € R;). Proper-
ties (L2) and (L3) imply that L-! is Hermitian, so
that L~1 and L admit of a complete orthonormal
set of eigenvectors {y,}; on B ,-1 =E, and we have
Lo, = ng,, L1, = (A1§‘1¢,,where {27 is a set
of real numbers, [, = x| = -+ = };] =
|A;41) = ---,and |x;] = as ! — o, Finally, sup-
pose that L is simple and Z is a subset of the
complex plane. A bounded linear operator @, (on
and into E for each w € Z) with continuous depen-
dence on w for w € Z and such that the range of
Qw(L‘lQu)m is a subset of R, for some positive
integer m(w) will be called “L smooth” on Z,

Theorvem 2: Let Z be a compact subset of the
complex plane, L be a simple operator in the separ-
able Hilbert space E,and @ , be L smooth on Z. Let
E, be the subspace spanned by the first » mem-
bers of the complete set {p,}; of orthonormal
eigenvectors of L. Suppose that for any given
positive number N > 0, there exists an integer
n > N,an a(n) € Z, and a nonzero n(n) € E, such
that

P,Q.P, + L)n=0, (3)
where P, denotes the projector onto E,. Then
there exists an Q € Z and a nonzero { € D, satisfy-
ing the equation

(o + L) =0. (4)

Proof: LetC, =— L~1Q . Then C, is com-
pletely continuous and is a continuous function of
w on Z. The projector P, commutes with L~1, so
that multiplication of Eq. (3) on the left-hand side
with L-1 yields ( — P,C)n = 0. By Theorem 1,
there exists an @ € Z and a nonzero { € E satisfy-
ing the equation { = C {. Therefore { = (Cp) ‘e for
all positive integers . "§ince @, is L smooth on Z,
Qut = Q;{(Cg)mt = (-1)"Q(L"1Q ™ < R, s0
that LL71Q £ = Qyt,l.e., £ =Ct €D, and (@

+ L) =0. ’
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The next result is our infinite-dimensional gener-
alization (for Q = w2P + wA) of Theorem IV of
Ref. 1.

Theovem 3: Suppose that L is a simple opera~
tor in the separable Hilbert space E,that L is
bounded below on D, , and that L possesses an odd
number of negative eigenvalues. Let @  be L
smooth on the real half-line [0, ) and be of the
formQ = w P+ B , where x is a positive real
number Pisa pos1t1ve operator on and into E,
inf [ (£, Pé)/(& £)]>0,By = 0,and w*[B, ) 0 as
w — o, Suppose that ((pi, w(pj) is real for all
w €[0,) and all 4,j = 1,2, -+, where {p,}; is a
complete orthonormal set of e1genvectors of L.
Then there exists an @ & (0, ©) and a nonzero
t € D, such that (@, + L) = 0.

Proof: Without loss of generality, we may as-
sume that the eigenvalues A; of L are arranged in
‘mcreasing order, i e-’7‘1 SAy =A==y <
0 <Ay =2y , where N is odd. Since

||B Il - 0 as w — o, there exists A > 0 such that

“B l\ < 36 for all w = A, where 5 = inf [(¢, PE)/
(5, £)]. Let w, = max{a, le |/8]1/} and Z

= [0,w,]. We show that for each n = N, Eq. (3)
holds for some a(n) € Z and a nonzero n(n) €E,;
the conclusion then follows immediately from
Theorem 2 and the fact that 0 is not an eigenvalue
of L. Now Eq. (3) is satisfied for nontrivial
n € E, if and only if F (w) =det(a;;) =0 for w = o,
where

a;; = (QD," wapj) + (<P,-, L(pj)
= wx(goi,P(pj) + (q)i,Bquj) + Aiﬁij’

i,j =1,2,...,n and §;; is the Kronecker 6. The
functlon F (w) is real valued and continuous on
[0, «),

n
F(0) = TL 2, <0

for n = N, F,{w) = © as w = o, so that if n = N,
F,(w) has a root @ € (0,x). For this a, Eq.(3)
holds for a nonzeron € E,, and we show that this
implies that o ¢ Z. Suppose a ¢ Z,i.e., suppose
a > wy. It follows from Eq.(3) that (n, QM)

+ (n, Ly) =0,0r

x (77 P’?) k1 (77; Ban)) _ (Th Lﬂ)
(Zn, W (n,m) o = Ml
Since
= (11, an)
a>w;, =4 @ |<a||B\|<

then

-3 <o (5ol %)

1869

o (m, B ) = ||
) [~ "0

<o (WP
@ ((n, 0
Thus o < 2|x,1/6, which contradicts o > w,
(21x,1/8)1/%, Hence a € Z,and the proof is com-
plete

The following theorem, while a finite-dimensional
result, is a sharper version of Theorem III of Ref.
1, and serves as the basis for the infinite-dimen-

sional generalization given in Theorem 5.

Theorvem 4: Let H and iA be linear Hermitian
operators on and into E,, X =—infg (¢, HE)/(&, ©)1>

0,Q={tlte E,, (£,Ht) < 0},and suppose that
- lHEl2 3¢, HY  lAgli2
= “f< ICHD  afelz el )> o

Then there exist a € Z= {w|Rew = Al/2, |w|2=2}
and a nonzero 7 € E, such that

(a2 + 2aA + Hp = 0.

Proof: Since we are in E_, there exists a com-
plex~valued function w(e) and f;‘(e) € E, with [{£]l = 1
defined for all € € [0, 1] such that w(e) is contin-
uous on [0, 1]w(0) = — ix1/2 and (w2] — 2weid—H)E
= 0 holds for all € € [0, 1]. Define x(¢) = [Imw(e)]?
and y(¢) = [Rew(¢)]2. Then x(e) is continuous on
[0,1],%(0) = x > 0, so that x(¢) is positive for all
sufficiently small €. For all € such that x{e) > 0,
Eqgs.(5) and (11) of Ref. 1 give, respectively,

0<x +y=—(§ HE) =,

(x +y)(x — 3y + 4e2(lALl[2) = [HE]2.

These equations imply

— |HE)2/4(E, HE) — 5 (&, HE) — 2| AL|2
=— ||HENI2/4(, HE) — $(¢, HE) — |lAElI2 = A >0,

and therefore the continuity of x(e) on [0, 1] yields
x(e) = A > 0 for all € € [0, 1]. Since w(e) is con~
tinuous on [0, 1] and w(0) = — iA1/2, Imw(e) =

— Al/2 for all € € [0, 1]; in particular, Imw(1) =

— A1l/2, The choice o = iw(l), 7 = £(1) completes
the proof.

Theovem 5: Let L be a simple operator in the
separable Hilbert space £ such that R ;-1 C R,
£ =L —bI,b a real number, and A be a bounded
linear anti-Hermitian operator on and into E such
that R ;-1 C R ;. Suppose that A, = inf, [(§, ££)/
(£,£)] <0 and

_ [ leEl2 3,88
. ”éf< I LD 7 4

Lag)2
nzuz)> o ®

where Q = {¢|teD,, (£, ££) < 0}. Then there
exists Q € Z= {wlRew = A2, |w|2 = — ) }anda
nonzero ¢ € D, such that (921 + 20A + £)¢ = 0.
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Proof: The facts that A is bounded,R,,- C R,,
and R ;-1 C R, imply that Q = w2l + 2wA — bI
is L smooth on the compact set Z. Let {p,}7 de-
note a complete orthonormal set of eigenvectors
of L (and £), enumerated so that £¢, = A ¢, and
Ay =Ag=2az3=--+. Nowon

En = {5 lg = E']'_Cl’kfﬂk} c DLy
P,Q P, + L=w2l+2wP AP, + £,
inf [(€, £8)/(2, )] = A, <0,

sothatfor @, = {t|t c E , (£, ££) < 0} C @, we have

M(_ 4H£gl|2 3, £ ||P,,A§!|2>Z |

L= I e T e HE

and therefore Z, = {w|Rew = A1/2 w2 < —x,}

C Z. Thus by Theorem 4, for each positive integer
n there exists a(n) € Z and a nonzero n(n) € E, such
that (@27 + 20P, AP, + £ = 0,i.e., (P,Q P, + L)1
= 0. The theorem is now an immediate conse-
quence of Theorem 2.

A simple estimate for the quantity A can be easily
obtained in terms of llAll, A = the greatest negative
eigenvalue of £,and y = inf,, (/8¢ f2/11&12). For

e @, x=|E||2/— (¢, ££) > 0,and 0 <8 =< 1, we have

_ gtz o (e 20
(&, L8¢) lell2
— (1 _p leEl2 | e£ll2 -1
=P en TP ie ¥

= (1—B8)Ial + Bux + 3x-1
= (1—p)Ial +2(3up)2/2
=T,

where T'= |a] + 3pla|-1if 8y < a2, while T =
2(31)1/2 if 3p > A2. Therefore & = ;I — |A]2.

A simple but useful special case of Eq. (1), which
is not of the type we have considered thus far, is
given by

P+ (q%+ -qz—')n+ (—éa—sai+u)n(x,t)=0,

3 (6)

._ a1
=3 T =gx’

where (x,1) € [a,b] X[0,®),and p, ¢, s,and u are
real-valued functions of x defined on |q, b] with the
following properties: p > 0 on [a, b;,p € Cla, b],

g € Cla,b],|s| > 0on[a,bl,seC%a,b]|q?+
4ps| > 0 on [a,b],and « € C[a, b]. We consider
the class T of real-valued solutions 7(x, {) defined
on [a, b] x [0, ®) such that: (i) 7(x, #), 7)x, 1), (3n/3x)
(x, £), and (327/3¢3x) are continuous on [a, b] X

0, ©); (ii) For each fixed ¢ € [0, %), n(x,f) € ;=
%cp lo € C2[a,b), p(a) = ¢(b) = 0} and 7i(x,?) €
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z,={ele € Cl{a,b], 0(a) = ¢(b) = 0}; (iii) n satis-
fies Eq.(6) for all (x,?) € [a, 5] X [0, ). It follows
immediately that n €.T" implies that ¥ is continuous
on [a,b] X [0, ®) and that for each fixed ¢ = 0, ¢
z,={plo e Cla,b], pla) = ¢(b) = 0O}

Theorem 6: Let

]
oo delsle12 4 ulo2)ax

%o f:[(qz + 4ps)/4s]| o | 2dx

(a) Suppose A = 0. Then Eq. (6) admits of no
exponential growing modes, i.e., there exist no
solutions of Eq.{6) of the form 7n(x, f) = Re{(x)
e with Rew > 0 and £ € X,

{b) Suppose s > 0 and A > 0. Then given any
n{x,t) € T, there exists a constant B such that
In(x, ! < B for all (x, t) € [a, b] X [0, ®),

(c) Suppose s > 0 and A = 0, Then given any
n{x, t) € T, there exist constants A, B, and C such
that n2(x, t) < At2 + Bt + C for all (x,f) € [a,b]
X [0, ).

(d) Suppose A < 0. If A is finite, then Eq. (6)
admits of an exponential growing mode n{x,?) =
&(x) e“!,with £ € Z,,w > 0,and w2 = — A, If A=
— o (this will occur if s <0 and ¢2 + 4ps < 0;
in this case the problem is elliptic and is not
well posed, then Eq. (6) admits of exponential-
growing modes with arbitrarily large growth
rates,

Proof: For each n € T', we have

b LY
d [°15()2 + s()2 + un?]dx =0,

dt

so that

t=0.
(7

b
If s >0 and A = 0, then p [, (#)2dx = M,t =0,
where p = min[a'b]p(x). Now

fab[P(ﬁ)z + s(n")2 + un2]dx = M = const,

b
| j—g- S neax ' 2 =l2f,, midx l 2
<4 fabnzdx f;b(r'z)zdx = % fabnzdx,

which implies

fabnzdx = [t(M/ﬁ)l/z + (fabnz(x, O)dx) 1/2} 2
(8)

Set § = ming, ,;s(), # = ming, ,u(x). Then since

L, ay|2 < [ zay flay
=(x—a) fab(n’)zdx,

2 =

Eq.(7) yields

92 < (x — a) (M — ﬁfabnzdx). (9)
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For the case s > 0 and A > 0, Eq. (7) implies

b
Ar fa nzdx =M (10)
where
— . g2+ 4ps
r = x[gug} S > 0.

Statements {b) and (c) are immediate consequen-
ces of Eqgs. (8)-{10). Now suppose there ex1st solu-
tions of Eq.(6) of the form n(x,t) = Ref(x) e”

with wa complex constant. Let tx) = {s|1/2 [;,(x)
exp(— tw [, (g/s)dy]. Then n(x, ) € T if and only
ife 20 and ¢ satisfies the Sturm-Liouville equa-
tion

wz(flii}_f’ﬁ)g +<_d_2+ 255" (57)2 + dus), g
432 dxz 432 g ’
(11)

For { € 3, we have

a2 + 4ps)/4s2] 1) 2ax
.1
t| 2 2

Jo [s1912 + ulg|2]ax 2

" [iq? + 4ps)/4s] l@l2ax

where ¢ = |s|-1/2¢, Statements (a) and (d) follow
at once from well-known results for the Sturm-
Liouville equation (11).

III, THE STABILITY OF A THIN, ROTATING
ANNULAR DISK

We consider the planar oscillations of a thin annu-
lar disk (inner radius a > 0, outer radius b) rota-
ting about its center with the angular velocity €,
and restrict our attention to rotationally sym-
metric modes (those depending only on the distance
7 from the center of the disk). We adopt the model
of Ref. 2. The pertinent equations for the perturbed
radial displacement u(7, t) = bx~1/2&(x)e“%!, and the
perturbed tangential displacement v(r, t) = bx‘l/ 2
¢(x)e“™, where x = 7/b, follow at once from Egs.
(11) and (12) of Ref. 2:

[w21 + w2 (1 (1)>+<‘g'1 0£2>] (22}’3): 0, (13)

A =a/b <x < 1,where

.BZE—B—.G——I,

. a
£, =2_g£_1, Tig3

p2Q2
2
£ E—diz- + 3x- 2,
X

and o and B are positive constants determined by
the elastic properties of the disk and its mass den-
sity, with 43 > o > 28. The reader is referred to

vV 1871

Ref. 2 for further discussion of these equations.
We assume that the disk is clamped along its
inner boundary at » = a and that » = b is free;the
boundary conditions are accordingly given by?2

f(A) = C(A) = 0?
£'(1) — z(4Ba~1 —1)E(1) =0 = ¢'(1) — 38(1).

The domains of definition of £, and &£, are taken
to be

D, ={fx)|f e c2[a,1],(8) = 0 =f (1)

— 3(4Ba-1 — 1)F (1)}
and

D, ={flx)lf € C2[a,1],/(8) =0 = f'(1)

respectively.

In the context of the Hilbert space L,[4,1], the
operator £ with the domain of definition

D(b,y) ={fw)lf € C2[a,1],/(28) = 0 = f*(1)
— (1)}

is a strictly positive simple operator, provided
0<a<1andy=j;. Thus .8 is positive on D,,
and since 0< 3 (4301’1 1)< 3, £ isalsopositive on
D,. Let A, denote the least eigenvalue and A, the
next greater eigenvalue of £ on D,, and let A1 be
the least eigenvalue of £ on D,. While the eigen-
values of £ on D(A, y) can be computed from the
tables of Bessel functions in Ref. 3, we need only
note that the least eigenvalue of £ on D(A,4) is,
for each fixed A, a strictly decreasing function of
v; this follows immediately from the minimum
principle for the least eigenvalue. Hence A, < A,
Since a > 28, it follows at once from the deflmtlon
of £, and £, that for 12] < Q_ = (8r,)2/2/b, £,
and h are both strictly posmve while for

(th)llz (aA1)1/2>
b ’ b ’

o, < lal< g = min (

£, will have precisely one negative eigenvalue
and no zero eigenvalue, while £; will be strictly
positive. Hence for [Q|< Q_or Q < el e,
£, and £, are simple operators in LA, 1] with
completely continuous Hermitian inverses £;1
and £31, respectively, so that the operator

(& 0
L=\o &,

is a simple operator in the Hilbert space E =
Ly[A, 1] %X Ly[A, 1] with the completely continuous
Hermitian inverse

=1
L_l . £1 0 N
0 £33
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Since

R&_ICC[A, 1]
~ 1
and

we have
R,-1 C Cl[a,1]1xC[A, 1) =Ry,

and therefore

_,2f1 0 0-1

Qu=w (0 1>+ w2(1 o>
is L smooth for w €[0,), ¥ (@ < Q,, Land L1
are positive; it follows from Theorem II of Ref. 4
that Eq.(13) admits of a complete set of eigen-
functions (complete in the sense that arbitrary
smooth initial data can be expanded in series of
the eigenfunctions) with pure imaginary eigen-
values w,, 8o that the system has a complete set
of purely oscillatory modes. In this case, one can
also show directly from the energy integral for the
time-~dependent version of Eq,(13) that the system
is stable. On the other hand, if @, < |Q| < @, it
follows from Theorem 3 that the system is expon-
entially unstable, Indeed, if we denote the complete
orthonormal sets of real eigenvectors of £, and
£, by {9, }F and {y, T, respectively, with £, ¢, =
BoPns LWy =9, 0p, 0 <y Spp <y <evvyyy
0 <yy <yy<-.-., then a complete orthonormal
system of eigenvectors of L is given by

(¥ o)
Y (w1y2

for » odd, and

)

for n even; thus L has precisely one negative eigen-
value and exponential instability follows at once

from Theorem 3. Thus Q, = (81,)1/2/b is the criti-

cal angular velocity for instability.

IV. STABILITY OF STEADY FLOW OF A ONE-
DIMENSIONAL WARM ELECTRON PLASMA

We consider a warm electron plasma, confined in
the interval 0 = x < b, satisfying the following set
of equations:

an

a(nv) _
5 *ax - S, (14)
mn(a—q+v§-2> kT _ o E (15)
at 9x ax ’

M. BARSTON

3E e
_5;6_ = Za[n,(x) bt n]. (16)
The equations are written in MKS units; €, is the

permittivity of free space. The quantity n(x, ¢) is
the electron number density, v(x, t) is the macro-
scopic electron velocity, s(x) is an electron source
term, m is the electron mass, & is the Boltzmann
constant, T the electron temperature,— e the elec-
tron charge, E(x, t) the electric field, and en (x) is
a fixed background charge density. A state of
steady flow, characterized by a 0 subscript on the
variables »n, v, and E, will exist provided

5(0) = 2L [ng(x)0g(0)], (1)

eEgx) = —~ %<kT 1n%%; +§”—vg<x)> , o (18)
€y dE,

ﬂt(X) = z— 7&— + no(x). (19)

We now assume small perturbations in #,v,and E
about such a state of steady flow, with ny(x) > 0 on
[0,b]. We restrict our attention to the class of
perturbations that are charge neutral, so that the
perturbed electric field 7n(x, ) vanishes at 0 and 5,
and for which the sum of the perturbed electron
current density and the vacuum displacement cur-
rent vanishes at 0 and 4. The linearization of
Eqs.(14)-(16) then gives an equation for 7 of the
form of Eq. (6), with p = n3l, ¢ = 2vgngl,s =
[#T/m) — v&lngl, and u = e2/(eym). Thus, if we
assume ng, vy € C2[0,b], Theorem 6 gives the
following stability results:

(i) If v8 <kT/m on [o,b], the system is stable;
(ii) If v > &T/m on [0,b],and A = 0 (which will
be the case provided

v3(x) — kT/m

i > 712,
where wZ = ngu is the local electron plasma
frequency), then there are no exponentially
growing modes;

(iii) If v§ > 2T/m,but & < 0 (this will occur for

vg —kT/m

2,2 %)
b w?

sup
[o,b]

2

then the system is exponentially unstable.
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The inverse scattering problem for the Schrddinger equation is considered. Under certain restrictions
on some of the odd derivatives of the potential, we obtain expressions for the values of the potential and
its derivatives at the origin, as functions of the phase shift and bound state data for any fixed partial
wave. Closed expressions for the first coefficients of the expansion of the potential are obtained.

1. INTRODUCTION

We study the inverse problem of the nonrelativistic
scattering theory following the approach to obtain
exact and explicit relationships between the values
of the potential and its derivatives at the origin,
and the phase shift (as a function of the linear
momentum &) and bound state parameters,

Relationships of this type were first obtained by
Newton, 1 and simultaneously by Faddeev, 2 who
gave a formula for the value of the potential at the
origin as an integral over a function of the phase
shift and a sum over the bound state energies, for
each partial wave, Later on, Buslaev and Fad-
deev, 3 Percival, 4 and Roberts5 found an expres-
sion for the value of the second derivative at the
origin, as a function of the phase shift and bound
state data on S wave, Afterwards, Calogero and
Degasperis® succeeded in obtaining expressions
for the values of the potential and all the deriva-~
tives in terms of the S-wave phase shift and bound
state parameters, In the case of relativistic equa-
tions, the same type of results have been obtain
by Degasperis? and by the author® for the Klein-
Gordon and Dirac equations, respectively.

In this paper we intend to solve the problem of
higher partial waves (I # 0) for a Schrédinger
equation, We develop a method that allows us, with
certain restrictions on some odd derivatives of
the potential (see Sec. 4) to calculate the values of
the potential and all its derivatives at the origin,
in terms of the scattering data, i.e., the phase

shift 5,(k) as a function of the linear momentum %,
the bound state energies, and the normalization
constants, for a given partial wave,

The method is based on a theorem allowing us to
go from an /-wave Schrddinger equation to an

(I — 1)-wave Schridinger equation with a modified
potential. By iteration of this procedure, an /-wave
equation can be related to an S-wave one. In this
way we can use the expressions obtained by Calo-
gero and Degasperis in their paper. The method
allows us, in principle, to calculate the value of the
potential and all its derivatives, and we get closed
formulas for the value of the potential and its first
five derivatives at the origin, The whole potential,
which was considered a holomorphjc function of »,
can be reconstructed, at least in principle, in this
manner,

In obtaining these closed expressions we have
been able to sum, with very simple results, cer-
tain products of sums which at first look very
complicated, These expressions are given in the
Appendix.

The units used in this paper are 77 = 2m = 1.

2., THE METHOD OF CALCULATION
Theorem?: Let y(k2,r) be a solution of the differ-
ential equation

y"(k2,7) + [k2 — W (r)]y(k2,7) = 0 (2.1)

and f(») a function of 7, a solution of the nonlinear
equation

f'r) =F2r) — wir). (2.2)
Let z(k2, ) be a function defined as
z(B2,7) = flr)y(k2,7) + y'(k2,7). (2.3)

Therefore, this function satisfies the equation

z"(k2,7) + [k2 — V(r)]2(k2,7) = 0, (2.4)
with the modified potential
Vir) = wr) + 2f'(»). (2.5)

The theorem is proved by direct substitution.

In particular, if we assume that
Wir) = Ul) + 1(1 + 1)/72, (2.6)

where U(r) is a nonsingular potentiall® and
y,(k2,7) the solution of Eq. (2. 1), we have

yy(R2,7) + [k2 — Ulr) — 11 + 1)/r2] y (k2,7) = O,
(2.7)

which is an [-wave Schrdinger equation, If, as
before [Eq. (2. 3)], we define

¥i-1(R2,7) = fi{r)y (B2, 7) + yi(k2,7), (2.8)
where
1) = filr) — W), (2.9)

then y, ,(%k2,7) satisfies the equation

vy, (B2, 7) + [k2 — Ulr) — I(1 + 1)/72 — 2f/(r)]

x ¥;-1(k2,7) = 0, (2.10)
If we now define f,(r) as
filr)=1/r + g,r), (2.11)
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we get

yi (kB2 7) + [k2 — Ulr) — 2g3(r) — I{1 — 1)/72]
X yz—l(kzy r)=0 (2.12)
and, if g/(») is a potential as well behaved as U(r),

the function y, ,(k2,7) satisfies an (I — 1)-wave
Schrddinger equation,

The equation for g,(r) is

gilr) = g2r) +(2/v)g,(r) — Ulr), (2.13)

and under certain conditions on U(») the function
g'(r) will be considered as a good potential.
Repeating the same procedure,i.e., in the first
step, we define

V1-ok2,7) = fr )y, (B2, 7) + yi,(R2,7), (2.14)

where f,_,(v) is the solution of

1) =72.,(r) — Ulr) — 2g3(r) — (1 — 1)I/72,
(2.15)

and so on; after [ steps we arrive at the equation
1
yo(k2,7) + <k2 — Uly) — 2Z)1g,’,(r)) yolk?%,7) =0,
n=
(2.16)

where the equations satisfied by the ! functions
g.(r) are

gir) = g2lr) + 2r—1g,lr) — Ulr),

g)1r) = g2,(r) + 20 — r-1g, 1 (r) — Ukr)
h zgf("’),

. l

gr(r) = g2(r) + 2mr-1g,(r) — Ulr) — 2 __Z)lgg(r),
l<nsl, - (2.17)

. { .

gi(r) = g§lr) + 2r-1g (r) — Ulr) — ZQg;(r).

Therefore, if we can manage to calculate the
potential

{
V) = Ulr) + 22, £,(r) (2.18)

of the S-wave Schrodinger equation (2. 16), making
the following expansions at the origin:

) i
Vo) =DV, v, =Y 0= El'd V()r=0,
->us", U, =L ::(0)_ L -;:—U(r) N
gy =28, .7, (2.19)
we can reconstruct U” by
V,=U, +2n+ l)i)lgi,ml, (2.20)
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that is, we need to know all the coefficients V, and
gi,n .
Then we have reduced an [~wave problem to an S-

wave one (in the next section we discuss the condi-
tion to be imposed on the coefficients of U(r)].

In general we have

7ir) =13 — vty = 2 L) 23 gi) (2.20)
i=n+l
and
Vu-1(82,7) =1, (r)y, (R2,7) + y/(R2,7). (2.22)

If all functions f, () vanish at infinity, the I-wave
phase shift §,(k) of the U(r) problem will be equal
to the S-wave phase shift 7,(k) of the V(r) prob-
lem; then we shall be able to use the well-known
results for the S wave. This point, and that of the
bound states, will be discussed in Sec. 6.

3. DETERMINATION OF THE
COEFFICIENTS g, ,,

Let us assume that the functions g(») and U(r) have
the expansions at the origin given by Egs. (2.19).
Replacing in the first of Eqgs. (2, 17), we get

n-1

(n+1— 2l)gl,n+1 —Z)lgl,sgl,n—s +U, =0,
o=

n=z2, (3.1)
with the initial conditions

&1 = [1/(2 - 1] U,, (3.2)

g 2=[1/(2—-2]U;, 1#1, (3.3)
from which we obtain
g = 1 (U ——%Igl,sgl,n-s> nz=2,

AT T F )\ 0 & '
(3.4)

In this manner we can determine allg; , asa

function of U,, except the coefficient g; ,,. It re-
mains indetermmate but finite if we constrain the
potential to satisfy

20~2

Usiq =§1gl,sgl,21-1-s' (3.5)

To determine g; ,,, we use Eq.(2.20) for n = 2] —
1, from which we get

24-2 -1
- Egz, B, 211-5s — 4 Egi,2l> .

s=1 =1
(3.6)

1
gz.zz=ﬁ(vzz-1

Note that this equation only formally determines
&, 2: because this coefficient is a function of, for
example, g1 5;, Which is a function of g,.1 5,9,
which is also undetermined. Later on,we will
come back to this problem.

Going down, in the jth step (I — 1 = j = 2) of Egs,
(2. 17), we obtain, using the same procedure
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1
1
gj,z =ﬁ(U1 + 4 gzlgt 2> (3. 8)
and 1
Ej 1= 2j — Zn T 1><U +2m + 1) _]E+ 8i,n+1

n-1
-—Egj’sgj‘n_s>, n>2 1—12j>2 (3.9)
s=1

The coefficient g; ,; is indeterminate but finite if

2j-2

l
Ugj-1 = sz?lgj,sgj,z_i-l-s - 4J'i_§1gi,2j’

l—-1=2j=2, (3.10)

Then we determine it with
1 2j-1 -1
85.2i =75 (VZJ‘ 218,58 .2i-1-8> — 28 25
s=1 i=1
(3.11)
Finally, after [ steps we obtain
l
g11=Upt 2_Ezg,-,1. (3.12)
1=
To assume g, , to be finite, we impose
1
U1=—4Zgi‘2, (3.13)
i=2
In general we have
1 J
1.1 =30 7 1) <Un +2(n + 1)§2g,~.n+1
n-1
_Zigl,sgl,n—s>7 n= 2- (3.14)
S$=

We can now determine g, ,, using Eq. (2. 20) with
n=1,

81,25 iV (3.15)

4, CONDITIONS ON THE POTENTIAL

Let us postpone the determination of the even
coefficients to the next section, and concentrate on
the calculation of the odd coefficients that give us
certain conditions on the potential, For the sake
of clearness, we are using now some results to

be derived in the next section,

Equation (3. 13) implies U; = 0. This can be shown
by using Eqs. (2. 20) and (3 2),

_ 4 | < >
Ul_——-—21_2U1—4i}=j2 T U1+4]Z+)1g]2
[4 1 -1 1

== 4U1<§2 2t 4, 52
Zl) 1
x - + ... y
jeie1 & — 2 ) (4.1
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from which [see Eq.(A2)] we obtain

Lit+1) U, =0,

i.e.,

120, U,=0, (4.2)
But this last equation implies

1

282 =0 (4.3)
and from Egq. (3, 2) we get

g,2=0, for I>2, (4.4)
and from Eq. (3. 8),

g112=0 for 1=>3, (4.5)
and so on; for fixed ! we obtain then

82=0, for 2<isl (4.6)

We calculate now the third coefficient. Equation
(2.20) for n = 3 and I = 1 reads

Va="Us; + 82y 4, (4.7)
and from Eqgs. (3. 4), (3. 3), and the result (5. 3) of
the next section (for U o as a function of VO) we
get

Ug=—1 (V,—3VoVy), I=1. (4.8)
For [ =2, U, must satisfy the condition (3.5),
which, recalling Eq. (4. 6), we can write as

Us=285,182,2= 0. (4.9)

For [ > 2, using Egs. (3. 10) and (4. 6), we get

l -1
. L 1
Ug=~8084=—87 g 4<U i % g 4>

Jj=i*1
(4.10)
by iteration we have
< 1+ 82 2 5+ 82 Z} 2 —3
o1
X 5i—— t...) =0 .
j=ZiZ1 2j—4 > (4.11)
or, in other words (see the Appendix),
3 (=10 + 1 +2)/4! =0,
i.e.,
U3=0 for [3>2 (4.12)
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Furthermore,
z

2 g.4=0, (4.13)

i=3
and by using Eq. (3. 4) we obtain
g1.4=1/@—D]U;=0, 1>2

(if1=2,g5 4 = 0), (4.14)
and from Eq. (4. 13),

g11,0=[1/@—6)]Uz=0, 1>3, (4.14)
and so on; finally

g14=0, for 3<is<l (4.15)

Conditions on the fifth coefficient are obtained by
using again Eq. (2. 20), now for » = 5, i.e.,

4
Ve=Us+122,8; 6. (4.16)
i=1
Putting ! = 1, using Egs. (3. 2), (3. 4), (3. 14), (4.8),
and the results of the next section, Egs. (5. 3) and
(5.9) for U, and U,, we get

Us=—3(Vs—3VoVa— 3V Va + T VEVy),

l=1. (4.17)
In the same manner we obtain, for [ = 2,
Us=15 (Vs —EVoVa—5V1Vy + VEVY),

1=2, (4.18)
For I = 3, Uy must verify Eq.(3.5),i.e.,

Us = 283,183,4 * 283,283,3 = 0, (4.19)

where we have used Egs. (4. 6) and (4. 15), For
1 >3, Uy must verify Eq. (3. 10); taking into ac-
count Eqgs. (4. 6) and (4, 15), we write

i
U5=—-122gj.6. (4.20)
i=4

Replacing the values of the coefficients, by itera-
tion we obtain

1 1
1 1
Us (14123 o + 1220 s
5( ,227—6 j§27—6
: 1
X +.4¢) =0, (4.21)
552121-—6 >

that is (see the Appendix),

Ug (1 —2)(1 — 1)1( + 1)1 + 2)( + 3)/6! =0,
i.e,,

Ug = 0,

for 1= 3., (4. 22)

CORBELLA
Furthermore, as before, we obtain

gie=0 for 4<j<l (4.23)
We are now ready to determine the general con-
ditions on the potential, We have proved that, for

1> 3,

Uy=Uz3=U5=0 (4.24)
and also that,for 2 < i < [,

g€:i2=0=10U,=0,

8i4=0=>U3=0, (4.25)

gig=0=U;=0.

Therefore, to make the general proof by induction,
we postulate that

2sns<sisl, (4. 26)

&; 2n-2 = 0’
and, given that

&i2n-2 = m <U2n 3t 4n—1) E g] 2n-2
2n-4

-Z g.-.sgi,z"-s-s), (4.27)
sa
it follows that
Ugp3 =0, for 2<snsl. (4.28)

We want to prove now that this postulate implies

£i0, =0, for 2<sm+1l<is<l, (4.29)
and consequently

Upp-1 =0, for 2<ms<l. (4. 30)
From Egs. (3. 4) and (4. 26) we have
&12x = [1/Q@l—2)]Uy,,, 12n+1, (4.31)

and, from Eq.(3.9),

l
1
8,20 = 57_—2—,,<Uzn-1 + Mj;zmg,-,zn>- (4.32)

The condition on U,,_, will be given by Eq. (3. 10),
but the first sum vanishes because of the postu-
late; therefore, we get (see the Appendix)

1
Ugp-1 <1 +4"iZn>+1 57—,

+ (4n)2 izn)ﬂ 2 — 2"

x]Z{}l 2] % +>
= Upyy (t—n+ 1) (—2’:1; 2)e-(l + n) — 0.
' (4.33)
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Then,
Ugpy-1 =0, for Ilz=n+1. (4.34)
But this equation implies
’;ﬂg,'h =0, (4.35)
and, as before, we obtain
g12,.=0 for 2s<sn+lsisx<l, (4. 36)
QED
These results imply [see Eq. (3. 5)]
Ugs-q =0. (4.37)

Summarizing, in order to solve the problem for
fixed [, we must require that

U1=U3:"'=Uzl_3=Uzl_1:0, (4.38)

i.e., all odd derivatives up to 2/ — 1 should vanish
at the origin.

5. DETERMINATION OF THE COEFFICIENTS
OF THE POTENTIAL

From Egs.(2.20) and (3. 8), we have

1 14
1
V°=U°+2522t370%+2j2 83,1) (51

=i*1
J
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from which we obtain by iteration
L
Vo=Up (1+2 ié)lm
1y 1 1

+ 22 é}lmjglm+-~->, (5.2)
i.e.(see the Appendix),

Uy =[1/(21 + 1)] v, (5.3)

which is a well-known result of Newton! and
Faddeev? [see Egs.(2.19)].

By using Eq.(3.9), Eq.(2.20) for n =2 reads

i 1
1
Vo=U, +GZ> T <U2 +6 _E gj’3—gi2,1>_
i=1 j=i*1
(5.4)
From Eq. (3. 8),
1 I
81 =371 <U0 +2 .~=E,-+1 g,.,1> : (5.5)
By iteration (see the Appendix) we obtain
g;,1 =121 +1)/(2j —1)(2j +1)] U,. (5.6)

Introducing these results in Eq.(5.4), by iteration we get

l -1 I
1 1 1 4 1
Vo =U,[(1+6 - + 62 - - +> — U3 2l+12<6
2 2( Zast YL w3 j=2¢+1 2j —1 6 ( 8L Gner @ e
2% iy 3 : (
+6 - +... 5.7
=1 20— 3 ;501 (25 — 3)(25 — 1)2(25 + 1)2 > ! )
which, as is proven in the Appendix, is
V,=— (21 —1)(21 + 1)(21 + 3) U, + 21(21 + 1) U3. (5.8)
2 3 2
Recalling Eq. (5. 3), we get
_ —3 2l
Ve = @@=+ D@ + 3) (Vz S V0> : (5.9)

To obtain U ,, we again use Eq.(2.20) now for n = 4, and, taking into account Egs.(3.9) and (3.13), we

have

1
_ 1
V4—U4+10i§21.__5

4
<U4 +10 ,Z_)l gj,S_zgi,lgi,3> + 3 Vi
j=i+

(5.10)

From Eq.(3.9), by iteration and using Eq. (5. 6), we obtain

Us 1 |
gj,3=2j—3<1+6 DN v B RPN roey

i=j+ i=j+l
1 1 [Aui §
+62 2

1
T e
o =3 )

_@r+z o, ( 1
27 —3 "0\ (2j—1)2(2j +1)2
l

6 i.—:::l (26 — 3)(2i — 1)2 (2i + 1)2
(27 — 1)(27 + 1)(21 + 3)

i=zf+1

1
2i —3 k§-+1 (26 — 3)(2k —1)2 (2% + 1)2 " >

(21 +1)

T (25 —3)(2j —1)(25 + 1)(25 +3) 2

(27 —3)(25 —1)(2j + 1)(2j +3)

<_ 8j (21 +1) >U2
(2j —1)2j +1/ °
(5.11)
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(results of the sums are given in the Appendix). By iteration in Eq. (5. 9), using Eq.(5.6), we have

1

V4=U4<1+102 5 + 102 7_‘,215 Ezz

1 > — 2(20 + 1)2 U [U, (21 ~ 1)(21+3) +3U3]
P2

<102 1

(2 — 502 2 — D2 (@2 02 @ 5 3)

1
(20 — 5)(2¢ — 3)(2i — 1)2 (2 + 1)2 (2i + 3) ¥

1

+1
(27 —5)(27 — 3)(2j — 1)3 (27 +1)3 (2 + 3)

1
(2 — 5)(2¢ — 3)(2i — 1)3 (27 +1)3 (2 + 3) ¥

r (see the Appendix)

Vg=U,4 [(20 = 3)(21 — 1)(21 + 1)(21 + 3)(21 + 5)/5.9] —2 1(20 + 1) [(21 — 1)(2L + 3) UyUp —

5
+2_4V%!

and from Eqgs. (5. 3) and (5. 9) we finally obtain
45

Vs = r—3)@r— D)@l + 1) + 32 ¥ 5) <V4 BECES!

For the even coefficients of higher indices, the
calculations are very complicated, and it is too
troublesome to derive general formulas. But,in
principle, it is possible to obtain all coefficients
for any fixed [ using the method developed in
Secs. 2 and 3 (see, for example, the determination
of Ugforl=1o0r Usfor I =1and [ = 2 in Sec. 4).
The same is true for the nonvanishing odd coef-
ficients (Ug,,1,n 2 1).

We emphasize that if the potential is an even func-
tion (since only the values of the odd derivatives
are restricted), we have formulas to determine it
for all partial waves.

Furthermore, notice that the expressions obtained
supply relationships between the phase shifts of
different partial waves produced by the same
potential. They are generalizations of the well-
known expression of Newton—Faddeev,i.e., Eq.

(5. 3),

1
0721 +1

4 H
T2F1 ? E,

U Vozﬂzl‘—fﬂfdkkd[ko(k)]

(5.3)

6. DATA AND THE CALCULATION OF THE
POTENTIAL

In this section we analyze the relationship between
the phase shift, the bound states, and the normali-
zation constants for the different partial waves.

> +16 (21 +1)3 U3 <10_Zl)

-1 1
102 = F
]Z=i 27 —5 Z;

j=1
022 s+—=
25 =5 1321
) + 22 (5.12)

(41 + 1) U]
(5.13)

41 41(21 — 1)

3_5% y2
VoVp t 921 + 1)? Vi — o2 V1> . (5.14)

—

For the phase shifts we approach the problem in
the following manner: The phase shift produced
by the potential U(r) in P wave is defined by the
asymptotic behavior of the regular solution of the
equation

vy (k2,7) + [k2 —U(r) — 2/r2]y, (k2,7) =0,
(6.1)

i.e.,
v, (k2,7) ;5% sinfkr — /2 + 8, (k)] (6.2)

For the S-wave equation deduced from Eq.(6.1),

vo (k2,7) + [R2 —Ulr) — 221()] 3, (k2,7) =0,
(6.3)

the phase shift is defined by
Vo (B2,7) 752, sin[kr + 5, (k)], (6.4)

the relationship between the two solutions being

yo(R2,7) =f,(r) y, (k2,7) +31(k2,7).  (6.5)
The function f, (») satisfies the equation

) =f30)—U @) —2/r2 (6.6)
and asymptotically behaves like

f10) == /7 (6.7)

[if we suppose that U(7) is of finite range]. Then,
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yo (k2,7) 75z coskr —zm +8, (k)] =sinkr + 5, (%)];

(6.8)
therefore, we can identify

61 (k) =8, (k). (6.9)
Notice that the slow vanishing of gJ (v) 755, 3772
produces a behavior of § (k) at low energy simi-
lar to a P-wave phase shift
6, (B) =08 (k) ~ k3. (6.10)
The same scheme is used to go from an [ wave to
an  — 1 wave, In other words, the /- and (I — 1)-
wave phase shifts are defined by the asymptotic
behavior of the regular solutions of the Egs.
(2.7) and (2.12), respectively,i.e.,

v, (k2,7) 75z sin[kr — 3 Ir + 5, (k)], (6.11)

y 1~ (B2, 7) 5% sinfkr — 3 (I—=1)7 + 6, (B)].

(6.12)
Given that

filr) s b7, (6.13)
since the relationship between the two solutions is
given by Eq. (2. 8), we have

Y- (k2,7) ~ cos[kr — 3 Ir + &, (k)]

=sinfkr — 3 (I — 7 + 8, (k)]; (6.14)
therefore, we can identify

0, (k) = 5, (k). (6.15)
The behavior at low energy is

6,(k) =8,y (k) ~ constz®"? (6.16)

because g4 (¥) ~ (21 + 1)r~2,
Repeating the same arguments [ times, we get

5, (k) = 0ymy (B) = Bymg (k) = -+ =1y (R), (6.17)

where
6, (k) is the I-wave phase shift produced by the
potential U(r),

;-1 (k) is the I-1-wave phase shift produced by the
potential U(r) + 2g}(#),

Mo (%) is the S-wave phase shift produced by the
potential

Ulr) + 2 ég; (r) = V(r).

Then, given the I-wave phase shift 6, (k), we can
use the formulas of Calogero and Degasperis® to
determine

V, =V /nl. (6.18)
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For the bound states we first analyze the relation-
ship between the problems in P and S waves. We
start from Eq. (6. 1); the Jost solution of this prob-
lem is defined by the asymptotic behavior

=ikr

hilk,7) > ie™, (6.19)

and the Jost function is

hq(k) = }ir(!)l kr hy(k,7). (6.20)

The regular solution can be written as

v1 (k2,7) = (i/2%2) [y (= &) Ry (k,7)

+ hy(k) hy(—k,7)]. (6.21)
If for the value = —ip we have hy(k = —ip) = 0,
there exists a bound state in the P wave of energy
_pz_

Now we turn to the S-wave problem, using Eq.

(6. 5); the Jost solution is defined by

ho (k) g ™, (6. 22)
the Jost function is
ho (k) = lrgrr(l) ho (R, 1), (6.23)

and the regular solution can be written as

o B2, 7) = (i/2)[ho(— k) Rk, ¥) —ho(R)ho(— &, 7)]
= f10)@/22) [y (= R)hy (B, 7) + By (R)Ry (— R, 7))
+ (i/2k2) by (— Ry (R, ¥) + Ry (RIRY (— k, 7)].
(6. 24)

If there is a bound state in P wave at energy — p2
for the potential U(r), we have

(@/2p) [holip) hol~ip,7) — hy(— ip) hy(ip,7)]
= —[f1(r)/2p2] hy(ip) hy(— ip,7)

—(1/2p2) hy(ip) hy(— ip,7). (6.25)
Since the rhs vanishes for »—®, we should have
ho(—ip) = 0 [otherwise h(ip,r) diverges]; but this
implies a bound state because

Yol=22,7) 7520 and yo(—p2,7) ;530

r—0

fve assume the potential is not a singular one).

Therefore, if we have a bound state in P wave for
the potential U(») at energy E, there exists a bound
state in S wave for the potential V(r) = U(r) +
2g’(r) at the same energy E.. This can be expres~
sed as

EL [U()] = ES [Ur) + 28'(r)]. (6. 26)
The converse is also true. This can be shown in
the following way: If V(») produces an S-wave
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bound state at E = — p2, we have hy(— ip) = 0. By
substitution in Eq. (6. 24) and taking the limit
r—, we obtain

0 =(1/2p2) lim [(r~1 —p) hy(ip) e

+ ("1 + p) hy(— ip) €,
but this equation implies k,(— ip) = 0, i.e.,a P-
wave bound state at E = — p2 produced by the
potential U(r).

The same scheme can be reproduced without any
difficulties for every partial wave; therefore, we
can write

!
E.[U()) = E: (U(r) + 2i§gg ('r)> =E; [V()].
i (6.27)

For the normalization constants of the bound
states, we realize that from Eqgs. (2.7)-(2.9) we
get

Cit UM = [Jdr yp(—ip,7) =

X yZ. (—ip,7).

(—p2)-1 f: dr
(6.28)

Here y, (—l ip,7) is the bound state wavefunction (of
energy E, = — p2) normalized with the convention

hm (@1 + 1)"r yl(Ef,Y)] =

By iteration we can demonstrate in general that
if there exist bound states at 2 = — ip,, then

CORBELLA

€., l+1

4=
B Fo(i.b,,) 1."0("' iP,,)’

4i (—p2)

b (6. 30)
h,Gp,) By~ ip,)

where k,(k) is the Jost function for ! wave of the
Schrddinger problem with a potential U(»), F(k)
is the Jost function for S wave of the Schrédinger
problem with a potential V(r), and the overhead
dot indicates the derivative with respect to k.

Summarizing, if we have as data 6,(k), E ,and C

in order to calculate V, by Eq. (6. 18), we can use
the expressions given by Calogero and Degasperis
[Egs. (2. 29), (4. 20), (4. 21), and (4. 19) of Ref. 6],
being careful to replace

0 ,(k) where it reads 7(k),
E, where it reads E,, (6.31)
(— EL)’C! where it reads C,.

In conclusion, we are ready now to construct the
coefficients U, using the formulas of Secs. 3 and
4 and to calculate, in principle, the entire potential

o0
Uur)=2 U, " (6.32)
n=0
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APPENDIX"
The following formulas were proven by inductiontl;
1+2Z} +22} 1 Z} 1 +22} Z} 1 i} 1 =2l +1
—1,5, 2i—1 2]—Tt]+1 21 —1 .5, 2k—1
(A1)
1+4Z) +4Z 1 Z) 1 +42 1 ’i 1 é 1, ... _ e+
—2 Ziﬁl 2 —2 22— 2,5 -2, 2k—2 - 2
(A2)
Similar formulas can be expressed in a more general way as follows: If n =2p + 1,/ =21,andp =0
: Z
1 5 1 1 _@—n+2)2—n+ 4) (21 + n)
1+2njz=i % +(2n) E 2]___1“;31 5 —T7 R ¢ p—y (A3)
ifn=2p,l=2p,and p =1,
Z -1
1 1 1 (I—p+1)l—p+2)...(+p)
1+2 . + (2n)2 . Foeee = . (A4)
njgil 2]—n ( ) j=§1 2]—7[‘%1 2i —n n!

In all these expressions we have established the convention

=0if m <n.

(WE

n

-,
"
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Furthermore, we can prove the following results:
142 5 Ll owge yw 1w 1 A+l (A5)
i =1 A T W w—1' Ty EFT
1
1 1 1 {1 +1)
1+4 sz + 42 feo= o . A6
RN = %}1 5= El T H(ESY (A8)
We note that Eq. (A5), combined with Eq.(Al), and (A6), with (A2), give us
! 1 !
,2 G101 (A7)
! 1 2
1
SN S Uy S
Aie-n " ( l(l+15>’ (48)
from which, interchanging indices, we get several relationships; for example,
. —1
-2-31 (27 — 1)(21 —3) " 2-71 (A9)
1
1 Ul + 3)
— - = . A
P VRS VO I S V() (410
The generalizations of Eqs. (A5) and (A6) are,forn =2p + 1,7l =1,and p =0,
1 < 1 (Ql—n+2)(2l—n+4) - (2 +n)
1+2ni§1 n+(2n) ‘%)1 2 —n k§1 2k—n+' T —nF 22 —=nta) (2 tn)
{A11)
and, forn = 2p,l 2p,and p 2 1,
1 1 1 I—=p+1)I—p+2)ees(l+p)
1+2 ~ + (2 2 +ee =
"i% (2n) ,g‘?l _n,,§1 %= G2 FDG—pFD- G+
(A12)
from which we can get relationships similar to Eqs. (A9) and (A10).
The following relationships (also proved by induction) were used in Sec. 4:
1 ! 1 -1 1 1 1
—— +6 + 62 . +
(472 —1)2 i=§1 (27 — 3)(4¢2 — 1) i};’l 2 —3 k=Zi)+1 (2k — 3)(4k2 — 1)2
1 . 3
= 8) — s ), A13
(2 + 3)(452 —1)2 ( TTaE 1> (A13)
1 -1 1
1 1 1 1
1+6 + 62 - + ... = (A14)
;Zi (2j — 3)(4j2 —1)2 121 (2j —3) i=§1 (2 — 1)(4i2 — 1)2 24+ 71
] -1 1
1 1 1 2]
2 + 102 s + =
i (25 —5)(452 —1)2 (452 —9) ]El 2j =5 ¢=§1 (2¢ — 5)(442 — 1)2 (452 — 9) 9(2r +1y
(A15)
1 z
1 1 K +1)
+ 102 = T2
,Zi (2j — 5)(452 —1)3 (452 —9) E 21 —5 ‘§1 (27 — 5)(4i2 — 1)3 (442 — 9) 9(21 + 1)2

(A16)
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This is a generalization of F. Czlogero's (private communi-

cation) basic proof, i.e., the transformation of a problem in

P wave to another in S wave. Another transformation of this

type was studied by the author (IMAF Report,1969) (using a

method suggested in a previous paper8), which, however, leads

to a Schriddinger equation with an energy-dependent potential;

furthermore, the calculations are very complicated and the

results less elegant and complete than those we are giving

now.
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10 We restrict the potential {/(r) to the case where it does not
have a bound state (or resonance) of zero energy.

11 After the author proved these relationships by induction, A.
Grunbaun (private communication) gave a more concise and
elegant proof: "Let us consider the numbers ¢,,c,,...,c,.
Let us form the sums of all their products without repehtlon,
it is easy to prove that

1+cytey+t o te,+ecyteqegtr vy, +o0e
teoglorv e, =1+ ¢, +cc, 4 e,
24& dal i<j'] 1v2 i

=1+ el +cy) -0 (1 +ey).

Then, to prove, for example, the relationship (Al) we put
¢, = 2/(2{ — 1). Therefore,

i 2\ _ 4 (2i+1) _ .
(A1) =1 (l +E‘:T) =& (21’- 1) =2+l

Most of the other expressions can be proved similarly.
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The boson calculus as used for U(z) cannot be applied directly to O(r) and Sp(n). Modifications are
made to boson operators, in order to obtain new operators which enable explicit states of irreducible
representations of O(z) and Sp(n) to be constructed. Calculations for O(3) and O(4) show how these
operators permit a greater simplicity, and reveal more fully the group structure than has previously

been the case.
1. INTRODUCTION

The importance of bosons in connection with the
unitary groups is well known.1 Using bosons, we
can construct explicit states of irreducible rep-
resentations of the unitary groups.

Let the carrier space of the defining representa-
tion of U(n) be the n-dimensional vector space A.
Then the carrier spaces of all irreducible repre-
sentations of U(n) can be projected out of

B =AW x A2 X ++» X A(X) the direct product

of A vector spaces A. The transformation induced
by the operations of U(n) commute with transfor-
mations permuting the vector spaces among them-
selves. These latter transformations are com-
pletely described by the Young symmetry patterns
defined by partitions [m] of A. Each Young tableau
defines a Young symmetrizer which projects B
into the invariant subspace defined by the Young
tableau. In this way B is decomposed into in-
variant subspaces.

In order to obtain explicit stages,the space B can
be realized with boson operators, i.e.,

A§°)é—>ai°Ti=1"'"; ag=1--+ 2,
where the bosons satisfy
[a?’ a;T] = 6i]'éc”: [acirv a;] =0= [a TT
(1. 1)

Application -of the Young symmetrizer produces
the antisymmetrized combinations

t ot t

1 o e 12 LR

@y ity = ZE(Iy Ty o o0 D)@y @) - or g,

(1.2)

representing columns of the Young tableau. States
of an irreducible representation of U(n) become
explicit boson (and multiple boson) operators act-
ing on the vacuum }0).

For the orthogonal and symplectic groups,B must
be decomposed further. The operation of contrac-
tion (taking the trace) of tensors belonging to B
commutes with the orthogonal and symplectic
transformations.2>3 Hence, we must now project
out the traceless part of tensors belonging to B,
and then apply the Young symmetrizer, so as to
decompose B.

If we realize B with boson operators as before,
then we must project out the traceless part of
products of boson operators. This method is not
suitable for use in general, although it has been
attempted by Holman? for Sp(4). However his
space is not completely traceless. A simpler
method is to realize B with symmetric operators
a7, chosen so that B is immediately traceless. If
B is to consist of traceless tensors, then our
operators a‘{T must satisfy the traceless conditions

agTaTT = 0 for O(n)

or (1.3)
oT TT
€,00, 9 = 0 for Sp{n)
where € » q,the symplectic metric, satisfies
€pa€ra = O €pg = T €gp>

repeated p,q -+ - summed from 1 --- #n,

One cannot use boson operators for this purpose,
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selves. These latter transformations are com-
pletely described by the Young symmetry patterns
defined by partitions [m] of A. Each Young tableau
defines a Young symmetrizer which projects B
into the invariant subspace defined by the Young
tableau. In this way B is decomposed into in-
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In order to obtain explicit stages,the space B can
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of an irreducible representation of U(n) become
explicit boson (and multiple boson) operators act-
ing on the vacuum }0).

For the orthogonal and symplectic groups,B must
be decomposed further. The operation of contrac-
tion (taking the trace) of tensors belonging to B
commutes with the orthogonal and symplectic
transformations.2>3 Hence, we must now project
out the traceless part of tensors belonging to B,
and then apply the Young symmetrizer, so as to
decompose B.

If we realize B with boson operators as before,
then we must project out the traceless part of
products of boson operators. This method is not
suitable for use in general, although it has been
attempted by Holman? for Sp(4). However his
space is not completely traceless. A simpler
method is to realize B with symmetric operators
a7, chosen so that B is immediately traceless. If
B is to consist of traceless tensors, then our
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because they cannot be made to satisfy either of
Egs.(1.3).

2. MODIFIED BOSONS

In order to know what operators are to be used,
let us see how boson operators are introduced for
the unitary groups. We can then see what modifi-
cations are necessary,

We can define a representation T of U(n) in a
function space R™ by

TU)f(x) = f(Ux)

where

U €Un) and x € E,_, the n-dimensional Euclidean
space, and f(x) € R’m. This representation will be
irreducible if the representation space R™ consists
of homogeneous polynomials of degree l. If we
wish to raise the degree of fl € R™, we simply
multiply by x, because x,7' ¢ R™"* if f* € R™. But
raising the degree of /* corresponds to adding a
particle, i.e., applying the creation operator. Simi-
larly, to lower the degree we differentiate:

3

I ni-1
axj fPeR .

Therefore we make the associations
(2.1)

and so we have bosons.

Under orthogonal transformations, R™ becomes
reducible. 72 = x2 is invariant, so that the sub-
space 72 R* “is invariant and must be factored
out. We may writed

R™ = H' @ r2R"2 (2.2)

-where H' is the invariant representation space.
Now if #* € H’ then k' is orthogonal to »2 R* 2 i.e.,

(h', 72 f 2y = Ofor all f¥°2 ¢ R*2
and therefore

(Vzhl,fl—z) =0for all f©2 ¢ RM2,
since the adjoint of x, in R™ is 5% ,by (2.1).
Hence

v’ =0, (2.3)

i.e., H' is the space of all harmonic homogeneous
polynomials of degree I.

The annihilation operator is unchanged since

2

axj

e H Y it Rt H.
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However x;4' ¢ H'" because v2x;h’ = 0. In fact
(x; — v2[v2,72] 1 [v2, 5, ) k' € HY? (2.4)

(note that v2 commutes with [Vv2, #2] within the

harmonic space). We see that the creation operator
has been modified, and we now have

al & (1 —r2[v2,72] 1y2)x, (2.5)
d
— . 942[w2 4211 9
= x; = 272(V2,72]1 o (2.6)
and
2
a; ¢ 5 — (2.7

These operators, “modified boson operators,”
satisfy

[ai’ aj] =0
and, hence,
T
fal,af] =0 2.9
and ; +
la;,a;] =06, —a;(n/2 + Nyla, (2.9)

t d cer s .
where N = a,a,=x, T within the harmonic

b
space.
Now if we define the unique vacuum by «;]0) =0
foralli=1, ol , 1, then it follows from (2. 8) and
(2.9) that a;a; |0y = 03 | 0) and then, also

a,a)210) =0, (2. 10)

From the uniqueness of the vacuum we have
al2|0) = K|0) for some constant K. An
arbitrary state |I) can be written as the sum of
products of I creation operators, and therefore we
have a,?|1) =K 1) ,i.e.,q)* = K.

Hence a2 = K and then az|0)=K|0) = 0 so that
we must have K = 0,i.e.,

a)? = 0. (2. 11)

This is the traceless condition (1. 3) required for
our operators. The adjoint relation a2 = 0 is the
harmonic condition on our space.

We can show from (2. 8) and (2.9) that N is the
number operator, i.e.,[N,a:] = a, and that

ot T
Ji; = —ilaa; —a;a;) (2.12)
are the generators of O(n):
[Jij’Jkl] = i(éleik + éiijl - 6injle - éijil)‘
(2.13)

Also, the aiT behave as vectors under orthogonal
transformations:
Ty T 1
Vij,arl =1Q;,a;—0;,a;).

T (2.14)
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We notice that often the a,T defined by (2. 8) and
(2. 9) may be regarded as ordinary bosons.

For symmetric representations (one row in the
Young pattern) we use the operators defined by
(2. 8) and (2. 9) to obtain states of irreducible
representations of O(n). In order to include extra
rows, we must introduce more variables: x7 i = 1,
LM, 0=1, )\ (for x rows). We then multlply
A spaces 11ke R ,and factor out the invariant sub-
spaces:

H « ‘x)

Rnll X Rn12 cer X Rnl)‘ — (2.15)
® | (x%, 2P )R™1x .. .RMY, X RMEL, R
«,B=1 ’
where
() =Uply, oo B

I, is the degree of homogeneity of f ta ¢ RMa and
(x®,x8) =xlxf. We see that h¥V ¢ HOV js
orthogonal to polynom1als containing the factor
(x%,x8),a,8=1-.- 1. Hence hUN satisfies

Ves PV =0,  a,8=1,-:-,1, (2. 16)
where
92
VocB = ’
B
ax;‘ axp

. . . ) .
and so our invariant carrier space H Y js harmo-
nic in all variables.

The annihilation operator is 8/3x7 , since

RO Uy meelgrl, ensly)
2 pWepgth-io Py

ox;

(2.17)

if r® e HYY, The creation operator must
have the form

The creation operator must have the form
— (%, 2% 4,5 (0),

(repeated @, B, - - - summed from 1, **, ), where
A g(0) is an operator to be determined. We re-
quire

Vye (x7 — (x“,xB)Aaﬁ(o))h(lx) =0,

[V, 251 = [V, ¢, 2%)) A, 5(0) (2.18)
provided

[Vyes Aag(a)] =0. (2.19)
Let

AN goram = [y, &%, 5")] (2.20)

be a A2 X A2 matrix (symmetric within each pair
of indices). Then

- fe;
AaB(O) =A 1(A)(aﬂ)(ye)[vye ’xi]

0

287t (A)(aﬂ)( ) ’
YO Y
ox

M. A LOHE C.
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where

A7) 1)@ AN (@ ) 01 = O (uiyien

- 2(6;10’ vr T 5;11-611(:)' (2-21)
The A™1 matrix will be .handled only through this
formal definition, but, for explicit calculations in
the carrier space, (2.21) requires more considera-
tion,

Now
A(A)(pu)(ﬁ‘l’) = 2["5(p wen T pE b(au)(crr)

+ Pauﬁ(au)(af)]’ (2.22)
where

P*Y = x},‘ (2.23)

ax”

isa polar1zat1on operator and satisfies [V, , P*"]
= 0 within H‘#V, Hence, the condition (2.19 is
satisfied.

We now have for our operators, which depend on
the number of rows A,

T By A-
a7 () < [1— (%, 2°) A7HR) (g gyiyey Vye 1 %7

By A- 3
=x] — 2% x") A 10‘)‘“”“’7’5;;_7’ (2.24)
i

aj <«

5 (2. 25)

i
We see immediately that these operators satisfy
[ag, a;] =0

and therefore

[a7,a]"] = . (2. 26)
We also have
oT - B
[0 7] = 6,07 —4ai"al, 0], (2.27)

where A™! is expressed implicitly in terms of the
a's accordmg to (2.21) and (2. 22) (note that

P =a} Ta 5)- The commutator

6 Al
2)x (a 8)(ry)

which we need in order to obtain this form, is
c~lculated using

d - - d
,ATH A =— A"
R i

The. relations (2.26) and (2. 27) are the defining
relations for our operators, when considering A
rows. We rarely need to know A"l explicitly,
which is fortunate since this inverse matrix
quickly becomes complicated. For example, if
A = 2 we have
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[ai,a;] =6 —alm/2 + Nyla,

— (] —al(/2 + NP @1, — P(n/2
+ Nyla;)

[b;,a]] = —(a] —b](n/2 + My 1P)Q"1p,

~ P(n/2 + Ny'la,), (2.28)
where

a: = at.lT,bZ-~ = afT
and
Q=n+N+M—P'(n/2 + My1P—Pn/2 +Ny1 p',
where

N=PpPll M =p22 p=pi2

We define the unique vacuum state by af\O} =0
forallo=1,---xandi=1,---n. We have
immediately a‘i’aTT|0) = 6th3‘”|0}. One can show
from (2.26) and (2.27) that

g ot 171

ata) 'a; " |0) = 0. (2.29)
For this we need to know
Aa v)oT) [0) = (1/2m) O uuytan) |0 (2. 30}

calculated from A1 A|0) = 7]0).

In the same way as before, for one row, we obtain
the result that our operators obey the traceless

condition a;” aﬁTT =0.

Other details are quickly obtained from (2. 27).

uTﬁuo

(P*",a)") = a} (2.31)

so that N = P° is a number operator and

A
N= 2, P°”

o=1
is the total number operator.

The generators can be written as

A

Jy=—1 Zi (a2' aj -a]‘."Taf‘). (2.32)
QG -

The ac,:T behave as vectors under rotations:

at

ot
G

[ ] = i(5;,a]" —b6,a7"). (2.33)

ijo

We can also write the generators as

n
JOT =~ %‘1 (a7 a] —a]"af) (2.34)

- Z-(Por _ Prcr)

provided A = n.

The J°" carry out transformations on the upper
indices:
(2. 35)

[Jo'f’a;ixT] _ i[GU“a;T _ GT“a?T]-
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The analysis for the symplectic groups follows
closely that of the orthogonal groups, with only
changes in sign, and 6,.]. - €.

. . t
For one row bosons are sufficient since ¢ aTa

)
= 0. [This is as expected, since Sp(2) is gfoqballyq
isomorphic to SU(2).] For X rows we have

2% (o x7 — 2e(x®, 2B [ A2 (V)]

0
(o B)(Gy)eip ax)' ’
a P

a; & —, (2.36)
ax;

where

e(x®, 2% = €, x5 x}
and 5 )

A =3 — 5
Cu)(aB) (aB)lom) 2(6“06"7 So “T)’
(2.37)

where

[a. )]

e(x”,x’)] (2.38)

=1 € —————
(@B){oy) e o a8
Y l: axp axq

and is antisymmetric within each pair of indices.
These operators satisfy

o 1ty _ o7 at -1 8
lai,a; 1 =007 +de;,¢5,a, A 9
2. 39)
and
o ot 171
[ai,¢j] =0 =[a;",a; ],

from which one can obtain the required traceless
condition

ot 1
€,00, 4, = 0.

For two rows [Sp(4)] we have

rt B OT

[a7,a]"] = 87765 + €,€;,(8°76°7 — 6" "5 )

xa(m+Nytal o, 7=1,2 (2.40)
The generators are

A
i t

Si; Zg(eip“pa aj + €, 0, af) (2.41)
satisfying
[Sijlskl] = €S T € S €S, €5,

(2.42)
Also
i T i
[Sijrax 1 =08;4€i,a) +014€,a, . (2.43)

One can also write the generators as s =
€Y PY" + €77 PY° transforming the top index
of ab .

It is possible to carry out an analysis similar to
that for O(n) and Sp(n) for metrics g which obey
certain conditions, such as gfg = 1, so that one
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may also have modified bosons for the noncompact
groups.

3. BASIS STATES FOR IRREDUCIBLE
REPRESENTATIONS OF O(r)

In this section we use the modified bosons to
obtain the states of highest weight for O(n), from
which we will obtain the general state,in the

Gel' fand basis, for 0(3) and O(4). An arbitrary
basis state is obtained from that of highest weight
by application of the lowering operators., The
raising and lowering operators for O(n) have been
obtained by Pang and Hecht® and Wong.7 Wong38
has indicated how one can obtain the general

Gel' fand state using bosons, but it will be seen
that our modified bosons permit a much greater
simplicity, and reveal the group structure more
fully.

The Gel' fand state has been explained by Pang
and Hecht.® The state of highest weight is
Mok Mapz " Mope-1Mork

Mor1 Mor2 " Mope

|max) = 3.1
KETR
Mop1
with
Mgy = Mypq o+ = Mgyl for O(2k)  (3.2)
and
Mope1, 1Mo,z " Moret e
lmax) = Mok, & (3.3)
Mopiy,1
with
Mope1,1 ZMopa1,n **° 2 Moy, for Ok +1).
(3.4)
Let
AT =al —iag] i=1,..k, (3.5)

where the a's are our modified bosons. We will
also use

ot o1

A%" =all, +iadl, i=1,--k (3.6
Then
-m =m
Imax) = M~1/2 (AI)mn,I n,z(AIZ)”‘u,z n3 o .
m M T My k
X (Al ) A ), BD)

where M is the normalization factor, and the anti-
symmetric combination A}z ...p 18 defined as in
(1.2).

We see that for this expression to be meaningful,
allthe m, ;,7 = 1,---,k, must be nonnegative in-
tegers satisfying (3.2) and (3. 4). Because of our
global treatment of O(x), only the tensor represen-

M. AL LOHE C. AL HURST

tations appear, and the m, ; cannot be half integers.
However we can include the case,for O(2%), when
M 4, DECOMES negative:

|max) = M“llz(Abmzk.l‘mak,z .

+

. Mok, k-1""M2k b, 1 Mok, k
X (Ayg . py) FVTEERAL L E, (3.8)

my, ,=<0,

where

~t ) A i, T i,

Ailiz"‘ik =22 €(iy iAo ARV AE
To show that |max) given by (3.7) or (3.8) is the
state of highest weight, we use Cartan's theorem
which states that the highest-weight polynomial,
in a basis for an irreducible representation of a
semisimple Lie group, is unique. From the con-
siderations of Sec, 1, we see that (3.7) and (3. 8)
are states in a basis for an irreducible represen-
tation of O{n), since they are linear combinations
of traceless tensors, each with a definite symmetry.

The weight of these states is given by

J2a.2a-1[max> =m,,|max)a=1,---k.

{3.9)
We have

of at
{JZa,zoc—l’Ai ] = 6io¢Ai

and ot ot
[JZQ,Za-l’Ak ]"—'”’ kot Lk
so that
i)
A > a
T 12.‘.q,q
J g, A4 =
[ 2a,20-12 12...q] {0, q(a:
and
i
-~ — A a =k
J Ay a]=q CPF .
Maazediaes] { Ay a<t

Hence (3. 9) follows.

The states (3.7) and (3. 8) are of highest weight
because

nglmax) =0,p=1,.-- k— 1,

A*! |max) = 0 for O(2k) (3.10)
and
D%, lmax) =0,p =1,..- k-1,

Ef,., | max) = 0 for O(2% + 1), (3.11)

where D/,;, A EE.,| are raising generators of
O(2k) and O(2k + 1) corresponding to the simple
roots, as defined by Wong.?

We have
at +
'th[Dﬁd’Ai ] = 5i-1pA(i{1
wi
1
[DQ{*l’A‘; l1=0,p=1,--- k—1
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and '
[Dpd»]_’ G ] = 07

so that

1
d [D Agp -
an

~
[Dpd’AlZ

p+1;

Also

[AFh49M =0

so that

[AF AL gl =0,g=1,--k,
A A = ag,
so that

[A5 AL, a] =0,

Hence (3. 10) follows.
We have also

T
[Egee, A7) =0

so that (3.11) follows.

Hence (3.7) and (3. 8) are solutions of (3. 10) and
(3. 11) with weights given by (3. 9) and by Cartan's
theorem they are the only solutions. These are
then the required states of highest weight.

The task of calculating the normahzatmn M is
greatly simplified by the fact that AT, A"
behave as ordinary bosons,i.e.,

(47,471 1L) =26,,6°7 |1), (3.12)

where (L) is a state consisting of A's only,
(3.12) can be proved from the commutation rela-
tions (2. 26) and (2. 27),but is most easily seen

from the realization (2.24) of a¥'. We have

t 7t
AT A]T 10
. By a-
= [(xgi-l —ngi) ~2(x°‘,x )A(tﬁ)(cy)

d 3
x — i oy —ixl,
( axy. ., axl )] (¥ 2j-1 = %3;)

[+ 4 . T T
= ¥p4-1 — g M¥gjmy —

ixg;). (3.13)
We see that, in the state of highest weight (3. 7),
only the boson part of the modified bosons give a
contribution.

With the state of highest weight we associate the
Young tableau with m,, ; ¢'s in the ith row, for ¢
=1,.--,k, From this tableau we can write down
immedlately the normalization in terms of hook
lengths.? Under an analysis similar to that for
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this section, Sp(n) reveals many of the same
features.

4. STATES FOR O(3) AND O(4)
Let us first mention O(2). The general state is

(aI - ia;)m

|m) = Ty [0y, m =0, (4.1)
T . ty-m
+
_ i g e, .2
(2-m (= m)1)1/2
and J,, |m) = m|m) (m is any integer). For O(3)

the state of highest weight is

[ §> = M(1)~12(a] — ia})*10), M(D) = 2141.

(4.3)
Let
J:t :J32 iiJ31. (4. 4)
Then the lowering operator is J_ and
. l>—~- (I1—m+ D +m) 1/2’ _1>.
(4. 5)

We obtain for the general state

| IS = om)1/20)m-4a] — iad)"a} ™ 10), (4.6)

where

M(m) = 21111 — m) (I + m)1/21! (4.7)
To obtain this result, we use the traceless con-
dition in the form

T 12
)_.

(aI - iag)(a;r +iay) =— az”. (4.8)

We also interpret negative powers of aI — ia;,r with
this relation, i.e.,

(aI + ia;) =— (a1 zaz) 1 Tz_ (4.9
Hence,
+ia))’
I ‘11 2
l_l> ~AniE [0) (4. 10)

is the minimal state.

We could treat the state of highest weight as con-
sisting of bosons, but we could not then use (4. 8),
and the general state (4. 6) would lose its sim*
plicity. One would obtain (4. 6) with

\ .
altm = <x3 ~72(3 + 2N)7L —52—) "
3

in expanded form. The general state (4. 6) is the
operator form of spherical harmonics.

If we wish to add extra rows to the Young sym-
metry pattern, then we know2,3 that tensors for
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which the sum of the lengths of the first two
columns is greater than three are zero. This is
shown in the following relations, which follow from
the traceless conditions (1. 3).

aT aJTk =0,i,7, k2 =1,2,3 (no summation)(4. 11)

a;‘§3 =0, aTaI23 =0, aq aIzs =0,i,j=12, ?4 1)
For two rows, the state of highest weight is

| (@] —ia])™Maly, —ial) |00 (4.13)
and y

l - U Y2, gt ot

|5 = o[ ] mtd - s

x ad™ ) I0) (4.14)
to obtain which, we use

ay(as, — ialy) = (a) — ia))al,. (4.15)

Here [ is any positive integer. The I = 0 state is
(aIzs/s/ﬁ_! )|0) (the triple scalar product). (4. 16)

For O(4) the state of highest weight is

M. AL LOHE C. AL HURST

where

u (M) 2”’2*’”1(7}11 + 1)! mzl(ml -~
my) - (my — my + 1)1

my)!

,(4.18)

provided m, = 0.

The lowering operator, obtained from Wong,7 is

L_= (K dyy — J_Jg3)2Jy; +1) + $iT2K,,
(4.19)
where
Ky =y + idyq. (4. 20)
Now
my My my My
L_I l > =N1/2 | -1 >, (4. 21)
1 1
where
N =202+ 1)my — 1 + D)(my + 1+ 1) + my)
X (1= m,).

The action of L_ is remarkably simple,AT1 being

changed to aZ:

My My -1/2
z > = s () el el o),
!

m @1 + 1)(my + my)1(my —

To show this, one uses the formula

;P(a B)( ) = z(a +B+n+ I)P(OHI B+1)( ) (4.27)

for positive and negative o and g.

my + D0 + m)1(I — m)!

my My -1/2 4,22
my > = M(ZZ ) AIml mzAlz [0, (4.17) where { )
m 1
1
J
17, — DI - 1 ! !
M(l) T (my + Dlmyl(my — D — my)1(1 + my)1 (1 + my + 1)1 . (4. 23)
1 @1 + 1)1(my + my){my — my + 1)1
[
In order to obtain (4. 22), we must use, in particular, | my m2> y M<l )‘1/2P(m+m2 e a;
=im ~ ! _
AL, +al,) =ial@] — ). (4.24) | m m o ia]
The general state of the Gel' fand basis is now Tml m=m Tm2
obtained by lowering m from its highest value [ to Xa Al 244 19), (4.25)
a general value m, using J_(I — m) times on
(4. 22). One obtains Jacobi polynomials: where
i
M(l> _ 22mrmymy(my + 1)1myt(my — DI — my)1 (1 + my) (1 + my + 1)) (4. 26)

f

If the top indices of the Jacobi polynomial become
negative we use the formula

(Z)Pffa'ﬂ) ) = (n J;ﬂ”)(x - 1)“13:1’:3)(:;).

The negative exponents of AI, which may appear,

(4.28)
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are interpreted with the relation (4. 24) and
, T =t 1 5t t t
iAJ(ayy +a3,) = A1,ALL AT AL, =— (a); +a},)2.

(4.29)
Hence, for example, if m < — my,,

2 -1/2
> = jl-mi(—)m, 22”‘M<l >

lmlm
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T
xPlE—;‘n—mz.mz-m) _ﬁ%
iay

X a) ™A A | ), (4. 30)

If m, = 0 (i.e., only one row in the Young pattern)
the general state (4. 25) is expressed in terms of
Gegenbauer polynomials.5

m From the general state, one can find the matrix
" elements of J, 5
}
7 my iy . (l+m+1)(l—m+1)(m1——l)(m1+l+2)(l—m2+1)x.”
3, - (21 + 1)(21 + 3)( + 1)2
/2 ymy Ma\  mmy + Dmy | M1 Mo
X(l+m2+1) +1 +——ﬂl—+—1)— l
m m
.[(z +m)( — m)my — 1 + D(my + 1+ D) —my)(I + mz)J 1/2 L
——— l e
(21 + 1) 21— 1)1 2 m (4.31)
f
which is as required.10 where
This result is obtained by means of the standard 2mimma(— my)my + 1)!
differentiation formulae, and recurrence relations = (m; + my +1) . (4.33)
for Jacobi polynomials, 11
One can also carry out a similar analysis when Formulas similar to (4.29) hold, e.g.,
mqy < 0. The state of highest weight is .
2 Alal, —aly) =4l 4], (4.34)

my

’ml m
my

2 N -
> = M-124] ™™ g Tome (), (4.32)

and the analysis proceeds in the same way.
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A compact proof of the Jahn—-Teller theorem is given, The method distinguishes between two cases:

(1) If the irreducible representation I" to which the wavefunction belongs is reducible under one of the
subgroups G, which leave one atom invariant; the proof is trivial and would apply in space of any number
of dimensions. (2) If ' remains irreducible under all G, more detailed attention is necessary. In two
or three dimensions, however, it is straightforward to establish the theorem for this case. It is further
shown that in composite-dimensional spaces, some violations of the theorem would be found under (2).

1. INTRODUCTION

In 1937,Jahn and Teller! proved the following
theorem: If a molecule has a degenerate electronic
wavefunction, it is unstable with respect to dis-
placements of the atoms, unless all the atoms lie on
a line. The proof was restricted to the case of
spinless electrons or a molecule with an even
number of electrons. This restriction was soon
removed by Jahn,2 who showed that it is true for an
odd number of electrons, except that the Kramers
degeneracy does not produce instability. In both
cases the kinetic energy of the nuclei was neglect-
ed, so that the statements refer to the equilibrium
positions of the nuclei in the Born-Oppenheimer
approximation. The theorem was proved by ex-
haustion;that is,for each of a sufficiently large
number of structures (in general, several for each
point group) and the corresponding possible sym-
metries of electronic wavefunctions, the theorem
was verified as a special case. The result is so
simple that a more direct approach seems desir-
able. Such a proof is the main purpose of this paper

One reason for wanting a more deductive proof

is that the proof by exhaustion gives no feeling
whether the theorem is “accidental” or whether
it reflects a much more general result. With

this in mind, we shall proceed as far as possible
without restricting ourselves to three dimensions.
It will indeed turn out that the theorem is not true
in a composite (as opposed to prime) number of
dimensions. Unfortunately, the extent of its truth
in prime-dimensional spaces will not be fully
answered.

As shown by Jahn and Teller, the proof of the
theorem is equivalent to the following group-theo-
retical problem.

Let I}, be that representation of the point group G
whose basis functions are all the possible linearly
independent displacements of the atoms of the
molecule under discussion. This will include I,
the possibly reducible representation according

to which a vector transforms and I';,the repre-
sentation of an axial vector—the latter correspond-
ing to rigid rotations of the molecule, the former
to rigid translations. We want to consider the
representation I, = I, — I';, — I'y. Now,if I’

is the representation according to which the elec-
tronic wave function transforms the products

¥Xy, belong to the representation I'*Ir. The im-
position of time-reversal symmetry, however,
requires that I" be a real representation, which may
possibly be decomposable into two absolutely ir-

reducible representations. Following Lyubarskii,3
I shall call such representations, which are irre-
ducible under the restriction that all matrix ele-
ments are real, physically irreducible. Time
reversal further requires that we consider not I'2,
but [I"2], which designates the appropriately sym-
metrized or antisymmetrized product of I" with
itself. If x(R) is the character of T, the charac-
ter of [T'2] is [y2] = 3[x2(R) + K2x(R2)], where

Kz =1 for single group representations and K2 =
— 1 for double group representations. Now the
number of independent matrix elements of a per-
turbation which transforms according to I, with
states of I is

the sum being extended over all g elements of the
group; x, is the character of I3,

Now I, will, in general, contain N, displacements,
such as expansion of the whole molecule, which
belong to the identity representation I'y. Such
displacements cannot change the symmetry, so

we are not interested in them and, finally, we want
to consider not I}, but I') = T, —~ NoT'g — Iy — Ty,
where I')(T;) is I){I}) with any identity represen-
tations removed to avoid oversubtracting. Finally,
then, the essential question is isN’>0?

N'=N,—Ny,— N, — N,

1
N = Z[x2]xps

7 J— 1 ?
Ny = Z,E[XZ]XV, 1.1)
N = ¢ S0
A g A
1
Ny = E' ZXpe

This is the question Jahn and Teller answered by
exhaustion.

It is worthwhile to emphasize that (1. 1) has three
simple interpretations. The one most frequently
encountered is that if (1. 1) is satisfied,a displace-
ment of I}, will lower the energy of the electronic
state I';for since I}, does not contain I'y,all
matrix elements must lead to a breaking of the
degeneracy, with a consequent lowering of the
lowest eigenvalue. Alternatively,one can say that
the charge density in a particular state y,, cannot
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have the full symmetry of G, but will in general
have components belonging to all other represen-
tations which occur in [I'2]. If there are displace-
ments with any of these symmetries, they will feel
a force and the molecule will distort. Finally, when
we view the molecule as having vibrational de-
grees of freedom, (1.1) expresses the condition
that there be matrix elements between the states
of Y of I',and the states formed by exciting a
vibrational degree of freedom to its first excited
state while leaving the electronic state at the same
energy. These matrix elements will thén lead to
strong correlations between the electronic charge
distribution and the nuclear configuration, without
charging the over-all symmetry of the state.

2. THE PROOF

We start with an outline of the proof. The first
step is to show that the calculation of N, or N
can be reduced to a calculation in the subgroups
G, under which individual atoms are invariant.

The first use to which we put this result is to
demonstrate that we can forget about N in (1.1).

We then show that if T" is reducible under some
G,, the Jahn-Teller instability follows imme-
diately.

The case that T is irreducible under all the sub-
groups of the atoms is then treated in two and
three dimensions, where it is easily shown to lead
to no difficulties. The consideration of higher
dimensions is deferred to the next section.

A. Introduction of Subgroups G

We start with the well-known and obvious fact that
I, = IpI'y, where T', is the representation of the
group as a group of permutations of the nuclei.

If the operation R of G takes nucleus « into the
site of nucleus 3, we have DBP‘,(R) =1, if not, it

is zero. In general, Df (R) = 6(8, Ra). Thus

XP(R) = ? 5(0’,R(1) and XD(R) = Xv(R)Z“) G(Q,Ra).

Now, in general, a given nucleus is not taken into
the positions of all the other nuclei by the opera-
tions of G: I}, in general, is intransitive. We can
divide the nuclei into transitive sets I';, such that,
in each set, each nucleus is carried to the posi-
tion of any other member of the set by some
operation of G.

If, for any representation I', we want to know
& 12, (R)x (R), we can now write
¢

g—1§xP(R)x(R) = g-lg 8(a, Ra)x (R)

=g"122 EG(Q,RQ)X(R)-

s acl"s R

(2.1a)

If we pick a particular nucleus ¢, 6(a,Ra) =0
unless R belongs to the subgroup which leaves o
invariant. For any other member of the same T,
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a similar situation holds and the subgroup will

be conjugate and therefore isomorphic to the
subgroup for «. Thus the sum of the characters
x (R) will be the same for the subgroup of each

a in one I, and we can call the subgroup G,. The
order g of G, is clearly g divided by the number
of nuclei in I',. Thus we have

g‘lcExp R)x(R) = 22&71 GEX(R). (2. 1b)
In particular,from (1.1)
Ny = ?gs”lcz[xz]x‘u
(2.2)

Nozzgs_lz Xye
s Gg

B. Elimination of N/

The first thing we want to do with this result is to
show that we need not worry about N, in (1.1). To
do this, we shall prove that if any irreducible
representation can occur in [I'2] for some T, and
if it is contained in T, it is contained more times
in I';. The proof applies in space of arbitrary
dimensionality.

Let us then consider a physically irreducible
representation I; which occurs./; times in the
reduction of I'/,. It is contained »; times in T},
where, from (2.1a) and (2. 2),

;=28 Xxs =L 8710 Xi X il
s Gg s Gs'j
so that
n, = LN =,

N, being the number of different transitive sets
I',. The equality »; =/, holds if and only if the
following conditions are fulfilled:

(1) N, =1. That is,all atoms are the same and
are related to each other by symmetry operations
of G.
(2) T, is irreducible under G,.
(3) No other I in T', is equivalent to I; under

G

-
Now, condition (2) requires that the molecule have
zero extension in all /; subspaces of I'} belonging
to I';. (If not, the nonvanishing projection of the
radius vector of an atom in I'; would be an in-
variant under G, and thus belong to 'y under G,.)
From this it follows that G must contain the
entire orthogonal group O(d;) for the subspaces
T;. In particular, G would contain the operation
J;, the inversion operator in the subspace. For
any I, [I'2] is even under J;, while I} is odd.
Thus, such a I could not occur in any [T'2].

Therefore, if I; can occur in [I'2] and does occur
I; times in T'y, it occurs more times in Tp(n; > 1)),
We can indeed forget about N, in (1.1).

We return to consider (2.2). Under any G,, T,
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certainly contains I'j at least once, since G, is
defined as the group under which a vector from
the center to a nucieus remains invariant.

C. T reducible under some G,

If, under some G, I' is not physically irreducible,
[I'2] must contain T, more than once. Thus
Np — N, will be positive.

This result also has the meaning that in the sub-
representation of I', consisting of motions of the
nuclei along their radius vectors (which belong to
I'; under G)), there is at least one set of displace-
ments which transform according to a represen-
tation I, which also occurs in [T'2] and which is
not I',. Furthermore,none of these displacements
can be a rotation of the molecule as a whole, since
rotations are compounded of motions of each atom
perpendicular to its radius vector. We need not
worry about N, in this case, then.

This subsection demonstrates that a molecule is
unstable unless I is physically irreducible under
all G,.

D. T irreducible under all G,

We must finally consider the case that I" remains
irreducible under all G,. When I';, is completely
reduced under G, it contains I'yl, times with

Iy =z 1. The remaining part we call T';. K I' is
physically irreducible under all G;, we have from
2.2 that

ND_‘NO = ?gs—lg_:[x Z]XIV (1fl" is
s
(2.3)

In two or three dimensions this problem is quite
simple though a bit tedious, at least in compari-
son with the previous section, The simplicity

is due to the fact that the G, of an atom not at the
center of the molecule is one of the following
groups:

irreducible under all G_.)

(1) C,,one n-fold axis of symmetry.

(2) C,,,C, supplemented by mirrors containing
the axis,

(8) Cg,one mirror plane.

These groups have only one- and two-dimensional
physically irreducible representations. Therefore,
being degenerate by hypothesis, I" can only be two-
dimensional. The following cases must be con-
sidered:

(a) If T is a double group representation, it has
only the Kramers degeneracy, which cannot be
split while time-reversal symmetry is preserved.
Hereafter, only single group representations will
be considered.

(b) If all atoms are on a line, the physically ir-
reducible representations are characterized by
an angular momentum 1,7 = 0. [I'2] contains T'j
and I'y, under G, as under G. Since I'; contains
only I'y and I'y, N, = N, and no instability occurs.
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These are the two exceptions noted by Jahn and
Teller.

(c) If,under G, T, has no three-dimensional
irreducible component, but the molecule is not
linear, there must be atoms whose G, is a sub-
group, not necessarily proper,of C,, . These G,
have only one-dimensional irreducible represen-
tations, so I" could not remain irreducible under
it. In other words, this case does not arise.

(d) This leaves the case that I',, and also I',are
three-dimensional irreducible under G,while I
is two-dimensional under G and all G,. Evidently,
[T'2] cannot contain I', or T,.

The groups involved are the tetrahedral groups
T,T;,and T,,the octahedral groups O, 0,,and

the icosahedral groups / and /,. A glance at the
character tables shows that the last two have no
two-dimensional physically irreducible repre-
sentations, while the other groups do have some

(in the case of T, one pair of absolutely irredu-
cible representations). For all these represen-
tations, [I'2] contains a two-dimensional represen-
tation which also occurs in the reduction of the
representation corresponding to uniform strains.
Since any molecule belonging to one of these
groups must have finite extension in all directions,
it must have, in its I}, displacements corresponding
to all possible strains. Thus this two-dimensional
representation contained in [I'?] is also in I},
which establishes the theorem for this case.

I will briefly sketch the main points of a more
deductive proof. One easily shows that if some

G, is C5 or C,,, its only degenerate representa-
tion is contained in both [I'2] and I} under G,,
which establishes the instability for such cases.
For axes with n» = 4, this argument does not work
and we have to show instead that such cases do
not arise. We note that I'2 must contain a one-
dimensional representation other than the identity
(and even under inversion if it is in G). Since I is
simple, neither it nor I, have such a representa-
tion, and they cannot have a two-dimensional I’
according to this argument. This leaves only the
need to show that one cannot have I' remain ir-
reducible under fourfold axes. This is easy to do
using the intermediate group D4, but to save space
we leave the details to the reader if he be in-
terested.

The net result is that the situation posed at the
beginning of part (d) can occur only in the groups
7,T,,T,,0,0,, and then only if all atoms lie on
threefold axes, so that the molecules must con-
sist of a set of cubés or tetrahedra—the atoms
being at the apices. Furthermore,the usual as-
sumption of point or spherical nuclei eliminates
some of the possibilities, forcing the symmetry
to be O, if the nuclei are arranged on cubes or
T, if some are on tetrahedra. In the former there
are two possible I'"s, in the latter, one. Thus the
total number of cases under subsection D, aside
from the exceptions (a) and (b), is very small,
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especially if one considers the number of mole-
cules in the shape of cubes.

E. Two- and Three-Dimensional Results

We conclude this section with two simple results
valid in two or three dimensions. They can be
proved by general but messy arguments, and I
shall merely quote them with the remark that
they can be established readily by reference to
character tables.

(1) Intwo or three dimensions,no irreducible
component of I'y can be contamed in any [I'2]
unless it also occurs in [rzl.

(2) For the crystallographic point groups and
the icosahedral groups, [I'2] always contains a
symmetry-breaking component of [I';2] if T" has
more than Kramers degeneracy, where I, is
the degenerate physically irreducible component
of T',.

From (2) the validity of the Jahn—~Teller theorem
for molecules with these symmetries follows from
the fact that any such molecule has a distortion
with the symmetry of each physically irreducible
component of [I';2], namely those arising from a
uniform strain of the molecule in the subspace

r,.

Similarly, (1) shows that N, can be neglected in
(1.1) for two or three dimensions.

Statement (2) also means that, in crystals, the
Jahn-Teller splitting of defect levels can always
be accomplished by motions of atoms in the near-
est-neighbor shell, provided the shell does not
consist of two atoms in a line with the defect, or
one atom.

3. EXCEPTIONS IN MORE DIMENSIONS

It will be seen that the last step of the proof gives
no' confidence in the generality of the theorem.
Therefore in this section we shall consider a
larger class of groups in all dimensions. I have
not been able to treat the general situation of
molecules in » dimensions, but the consideration
of single-valued groups for regular polytopes4

in » dimensions yields some interesting results.
First we review the types of such polytopes.

It is clear that in any number of dimensions #,

there must be an analog to the regular tetrahedron.

This is most easily constructed in » + 1 dimen-
sions and consists of the points (1,0,0,-++,0) and
all other points on the positive axes at one unit
from the origin. Projected into the hyperplane
Zx; = 1,this yields a,,the simplex polytope in

n dimensions. Its group is clearly S the sym-

+1)
metric group on (r + 1) objects. ?

Similarly, in » dimensions, we can consider the
2n points (+ 1,0,--+,0), etc., which form B, the
cross polytope, the analog of the octahedron. We
shall call its group O,. It may be characterized
as follows. An invariant subgroup Z, consists of
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all diagonal matrices with diagonal elements + 1;
the factor group O,/Z, is S,. Thus the order of

» 18 27,and the order of E)n is 27n! The same
group characterlzes the measure polytope, the
analog of the cube, consisting of the point
(t,1,+--,1) and all points produced from it by 5, .

For n > 4,this exhausts the regular polytopes.
For n = 4,there are three others, two belonging
to one group, while for n = 3 there are, of course,
the icosahedron and dodecahedron, and, for » = 2,
all regular polygons with five sides or more.

We shall proceed with a discussion of @,. Z, is
generated by the groups o0;,i = 1,++- n,0; being
a reflection in the hyperplane x; = 0.

Its 2”7 irreducible representations are one dimen-~
sional and can be characterized by an array (1,
—1,-+-) indicating which 0;'s are represented

by 1 and which by — 1. They fall in sets, each
member of a set having the same number ¢, of

— 1's. Under the full group, the members of a

set are associated,5 and when an irreducible
representation of O, is decomposed under %, it
contains members of just one set, and all the mem-
bers of this set will be contained an equal number
of times.

Now consider the group G, of an atom in a mole-
cule with this symmetry. We can, without loss of
generality, write its position as (a,,a,,a5,--+),
witha;, = a, 2 a3 == a, = 0. Then we can
call the number of zeros n,, the number of the
smallest positive a,7,,ete. The group G, will
thenbe O, X S, ---. Z, will be the largest

]

subgroup of T éontained in G, and the irreducible
representations of G, will be characterized,
among other ways,by ¢, defined with respect to

Z,, as t was with respect to Z,.

A. The Case 0< i< n

(1) If n, = 0,the reduction of I" under %, will
contain representatmns with more than one value
of ¢’ and will be reducible.

(2) If ny =0 but n; = n,we can consider the
intermediate group 0"1 X S,22 X «--:Dby the argu-
ment just made, I" is reducible under this group,
and, a fortiori, under G, —Sl XS, X

(8) ny=0andn, =n,we want fo know if r,
irreducible under O,, can be irreducible under
G, =S,. This questlon is answered in the nega-
tive in Appendlx Afor 0<t<n,

Thus, for all cases with 0 < ¢ <#,T cannot be
irreducible under G,

B. TheCaset =nor 0

If ¢ = », multiplication by II7x; changes it to one
with £ = 0. The squares of the representations
are identical so far as symmetry is concerned,
so we need only consider the case { = 0 explicitly.
We note first that [I'2] cannot contain T', or T,
since all powers of I" contain only components
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with £ = 0, while I', and I', have ¢ = 1 and 2,
respectively. Thus we need only consider whether
N, > N,.

(1) ¥ng=0andn,; =n,any representation of

O, with ¢ = 0 is irreducible under G, = S,. The
remaining question in this cage is whether [I'2]
contains I'y,the (x — 1)-dimensional subrepresen-
tation of I', which remains after the component
invariant under G, has been taken out. Here, with
G, = §,,I'; is the representation designated by
the partition (r — 1,1). It is shown in Appendix

B that, for a very special class of degenerate
representations, [T'2] does not contain (z — 1, 1)
under S,. This class contains those representa-
tions with rectangular Young patterns and no
others. This requires that » be a composite num-
ber, not a prime.

If n is composite, a molecule in the form of the
measure polytope admils wavefunctions which do
not exhibit the Jahn-"Teller instability.

(2) For any other set of #;'s, the question is
whether a representation I' of S, can remain ir-
reducible under S, X S”1 X «-., In Appendix B

we find that the answer is no unless one #; is

n — 1 so that G, is S,, (or O,_,, which amounts

to the same thing for ! = 0,7). Even then, only

I''s with rectangular Young patterns remain ir-
reducible. As just discussed, [T'2] does not contain
(n —1,1) under S,,but under S, _, the pattern is

no longer rectangular, so [I'2] does contain I',

= (n — 2, 1), and N, > N, by (2. 2).

Thus, case (1) of Sec. 3B contains the only excep-
tions to the theorem for groups 0,.

The case for groups S, is readily seen to be
exactly equivalent to case (2) of Sec. 3B. For the
group S, of the simplex polytope in (n — 1) dimen-
sions, the only G, for which a I" can remain ir-
reducible is S,_; and, just as above, we find that
ND > Ngy. Thus these groups produce no excep-
tions.

We conclude this section by checking to see if any
further exceptions can be found in a few simple
subgroups of O, for » prime.

First we consider P,, the proper subgroup. The
three-dimensional example is O. O, is the direct
product of P, and J, the inversion group, and its
irreducible representations are irreducible
representations of P, with the additional property
of being odd or even under inversion. Now let us
take a molecule with symmetry P, (we can assume
that, except possibly for an atom at the center,
none of its atoms has an inversion image—other-
wise it would be unstable under 6, and, a fortiori,
under P,} and combine it with the molecule ob-
tained from it by inversion. This molecule has
symmetry O, and is unstable, but its I, consists
of pairs of representation, identical under P,, but
opposite under J. In fact, it consists of I, for the
original molecule, with each I in I}, replaced by
It + I'7. [T'2] cannot contain any I'~. Thus some
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T'; in I}, must be contained in [I'2], and any mole-
cule with P, symmetry is unstable if T is de-
generate.

The group T, generated by T, and S,, where %7

is the subgroup of ¥ containing an even number
of reflections. The full tetrahedral group 7, is an
example. This group again does not contain J
which commutes with all its members, so 0, is
also the direct product of O, and J, and the argu-
ment proceeds as before.

Next let us consider @,, generated by =, and 4,
the alternating group on » objects. The three-
dimensional example is 7,. The analysis of this
group proceeds almost step for step like that of
0O,, the only different result being that,if n = 12 + 1,
the representations with ¢ = 1, induced from the
representations of 4 _; belonging to the partition
(1), are irreducible under G, = A, ;furthermore,
[I'2] does not contain T, under A,. However, this
does not lead to violation of the Jahn—Teller
effect in any prime-dimensional spaces, because,
if a molecule contained only atoms with G, =

[that is,atoms at (1111 ) and all points obtained
from it by sign reversal], it would actually have
the full O, symmetry.

Finally, we can consider the group R ,the common
subgroup of the other three, generated by Z° and
A, ,exemplified by T. Again, @, is the direct pro-
duct of R, and J, Thus the argument used for P,
and T, works, provided we note that a molecule
with atoms only at (111---) and points obtained
from it by changing an even number of 1's to — 1's
would have the group T,.

4. DISCUSSION

We see that it is possible to give a reasonably
compact and deductive proof of the Jahn—Teller
theorem in two and three dimensions, though final
cutting off of the retreat of the special case in
the cubic groups is not particularly satisfying.

In this sense, it is, perhaps, gratifying that excep-
tions were found in higher dimensions, since it is
now clear that no really general arguments would
be expected to work.

It would have been nice to be able to clean up the
remaining question: Can there be molecules in
prime-dimensional spaces which violate the
theorem ? I have wasted considerable effort in
this direction, with no fruitful result. It is, of
course, clear that exceptions, in any case, must
be quite rare, but this was obvious before the
present investigation.

After the completion of this work,I learned that
Ruch and Schonhofer had already published a proof
of the theorem which eliminated the detailed
examination of special cases.® There is a close
connection between the two proofs but I feel that
the present method uses the basic ideas in a more
direct fashion and reveals more clearly the
distinction between general and special features:
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The result of Sec. 2A above is a more direct

and powerful form of the basic argument of Ruch
and Schonhofer as contained in their conditions

1 and 2 and their Appendix. As a consequence,
they are not led to make the basic distinction
between I's which are reducible under all G_ and
those which remain irreducible under all G_. It
is just this distinction, it seems to me, which is
responsible for the peculiar combination of ob-
viousness and difficulty of proof which charac-
terizes the Jahn—Teller theorem. We found that
practically all cases fall into the former category,

Sec. 2C, for which the proof was remarkably simple.

While the proof of the other part was considerably
less appealing, it serves to emphasize the rather
“lucky” nature of at least this part of the theorem,
and to indicate a closer connection with the actual
exceptions noted by Jahn and Teller and the
imaginary exceptions we found in Sec. 3.

APPENDIX A

We consider whether a representation of On can
be irreducible under S,. A little contemplation
suggests that we try to construct representations
of O, as follows. For given ¢, consider the sub-
group 0,%x0,.,. ForO,take the product x,x¥3x3- -
%271 and all these obtained from it by permutlng
the indices. These form a basis for the regular
representation of S, which can be reduced by
choosing linear combinations A**(x,*-x,). Pro-
ceed similarly for O,_,, using the first (n — t)
positive even integers as exponents, obtaining
basis functions Bfov(x,, -+ -x,). Here a and 8
designate an irreducible representation which
will occur, in general, more than once, the occur-
rences being labeled by p and o, while g and v
label the rows and columns of the matrices. Now
for fixed ¢, 3, p,and o0, construct similar functions
for all other combinations of ¢ and (n — ¢) indices.
This set of functions for fixed a, 8, p, and ¢, obviously
forms the basis for a representation of ©,, which
will be shown to be irreducible. Let us label these
functions y(«, p, 4; B, 0, v; S), where S stands for
the set of indices whose x's have odd exponents.
The character of the group element [I(0]*)P is
then

x(t, @, gyny, P) = Za(s PS)y (P)xg(P) exp(En; s;)i,

(A1)

where 6(S, PS) = 1 if P takes the set S itself and
zero otherwise. x ,xg is the character of P in

the subgroup of type S, X S _, associated with S,
and s; is 1 or 0, according as 7 belongs to S or not.
Rather than evaluate x, we shall directly square

it and sum over the group:

Zx2 = L §(S, PS)S(S', PS")2(P)x3(P)
n PS8

1)% (si-sg).

X 10 (— (A2)

Now the sum over »n; = 0, 1 vanishes if s; — s; =
0. This must occur for some i if S = §’. Thus we
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can restrict the sum to terms S = S’, and obtain

=2 25 8(S, PS)XAPIXE(P)

ny S, P
=27[nl/tim — )] t1(n — t1) = 270! = g, (A3)

where 27 comes from the sum over #;, the next
factor from the number of S's for given £, and the
last two from the sum of x2(P) over S, and the sum
of x5 2(P) over S,.,, using the irreducibility postu-
lated earlier. Had we used different o's and 8's
with S and S’ we should have found in identical
fashion that the characters were orthogonal.

Thus we have a set of irreducible representations
of ©,, characterized by £, @, 8. To see if they are
complete we need only calculate the sum of the
squares of their dimensions.

d n!
Bttt — 1)

2 — 2 42 n! 2
D = 21,y (t!(n—t)!)

_ _ __n! \?
=%t — (t!(n_t)!>

=2"n!.

at, a,p) =

(A4)

Thus, we have a complete set of irreducible re-
presentations, each of which is an induced repre-
sentation of a subgroup 9, x O, .,

Now, in respect of S,, these are induced repre-
sentations of subgroups S; X S,.;. We shall use
a theorem of Shoda? to demonstrate that these
representations cannot be irreducible if 0 < ¢ < #.
We write the subgroups more explicitly as

H=S8(1,--,f x S( +1,---,n) and form the con-
jugate group XHX 1! for X = (¢, t + 1): XHX™!
=S(1--+ t—1,t+1) XS(t, ¢t +2,-++,n). Now H

and XHX 1 contain the common subgroup / =

S t—1)x St +2,:-+,n). Now consider a
representation I of H and the representation T,
of XHX T, where the matrix of the element R of
XHX™1 in Ty is equal to the matrix of the element
X"1RX in Ty

If we now restrict I"and I, to %, each element of
h commutes with X. Consequently under # the two
representations are identical. Shoda's theorem
then states that the induced representation of I
in S, is reducible. This procedure breaks down if
tisOorn.

This demonstrates that, for 0 < ¢ < n, the irredu-
cible representations of O, are reducible under
S,

n

APPENDIX B

We now turn to the question of whether a repre-
sentation T, irreducible under S, can be irredu-
cible under S, X §, X ---. We proceed by sup-
posing that 1t Is. "2
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It follows that I is irreducible under the inter-
mediate group S, X §,_ , where m is the largest
of the numbers ny---. 8ince this is a direct pro-
duct, each of its irreducible representations is the
product of irreducible representations I and

| S of the two smaller groups. Upon reﬁuction
under the group S,_,, where / is the smaller of
m and n — m, it must contain only copies of T,,_,.
Finally, then, if we reduce I'" under §,_,, it can
contain only T, _;.

One finds the representations of S _; subduced by
T of S, by removing regularly8 [ dots, one at a
time, from the Young pattern for I'. For each
pattern thus obtained, the corresponding repre-
sentation occurs if I'" is reduced under S,_;,. We
therefore want to know if it is possible to have a
pattern from which [/ dots can be removed regu-
larly one at a time in only one way.

Now, one way to remove dots regularly is to start
with the bottom of the column farthest to the right,
move up it to the top, then to the bottom of the
adjacent column and on up, etc., removing each

dot encountered until ! dots have been removed.
“Another way is to start at the right end of the
bottom row, proceed left to the beginning, then to
the right end of the next row, etc. It is clear that
these two ways give different final patterns unless
one of the following conditions is true:

(1) I=n—1orn. Since we chose ! so that 2/
= n, this could happen only for » < 2, when all
representations.are one-dimensional anyway.

(2) I =1 and the pattern is rectangular — that is,
it consists of s rows with £ dots each, with st =n.

BLOUNT

This requires that » be composite, not prime, if
T' is to be degenerate.

To sum up, a representation T, irreducible under
S,, can be irreducible under 5, x §, X --- only
1 2

if the latter group is S,.; and then only if » is
composite, and the Young pattern rectangular.

We now turn to the question whether [T'2 | contains
'y, which in all cases of interest is the question
whether under S, [T'2] contains (» — 1, 1). From
Hamermesh? we find that I'2 contains (» — 1, 1)
unless I has a rectangular pattern. We proceed
to show that {T'2} = I'2 — [I'2] never contains

(n —1,1).

The representation of S, as a permutation group

on » objects — the representation I'; for the sim-
plex polytope in (# — 1) dimensions — reduces to

I'gand (# — 1, 1). Thus for an arbitrary I'’, with

character y’, we have according to Eq. (2. 1a)

1 1
= Dxxp = D X =N —1),
n!snxxp (n —1)! sn,lX

where N(n — 1) is the number of times '’ contains
I,under S, _,.

Now, suppose I’ is { I'2} for some T irreducible
under S,. Under §,_;, I" reduces to the sum of

the representations associated with the Young
patterns obtained by regularly removing one dot
from the pattern for I'. Each of these represen-
tations occurs just once. Consequently, {I'2} does
not contain I'p, ', or (» — 1,1). This holds for
any T. Therefore, under S,, [I'?] contains (» — 1, 1)
unless it has a rectangular Young pattern.
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ate-space wavefunction of a three-body system for
the case when three free particles are incident
may have several applications, The leading terms

in the asymptotic form are related to the T matrix
for the process under consideration. Since the T
matrix for the case (3 — 3) has singularities in
addition to those present for the T matrix to be
used when one particle is incident on a bound

state of the other two, we expect to find new terms
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in the asymptotic form are related to the T matrix
for the process under consideration. Since the T
matrix for the case (3 — 3) has singularities in
addition to those present for the T matrix to be
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in the asymptotic form, The strongest singulari-
ties in T are the & functions in the disconnected
parts, which will give rise to the leading term in
the asymptotic form, which is easily written down,
The connected part of T, T, contains rescattering
singularities, of which the strongest, poles, corres-
pond to two binary collisions, The purpose of this
paper is to discuss the contribution to the asymp-
totic form coming from these rescattering terms
in T,. For simplicity, we assume that there are
three different particles of equal mass (m = 2,
interacting through short-range two-body poten-
tials.

It is shown, in the notation of Ref, 1, that in some
but not all asymptotic directions there is a con-
tribution of order p~2 in addition to the usual one
that behaves like p~5/2, We derive an expression
for this rescattering contribution and give a
formula for the boundary of the region within which
it is present. We also indicate what happens near
this boundary and in addition show that the ano-
malous term falls off no faster that p—1 in the
special case when two particles remain close to-
gether, The analysis does not hold for two excep-
tional values of the momentum of any incident
particle,

ASYMPTOTIC FORM

We work in the center-of-mass frame and use the

notation of Ref, 1, where the momentum of a three-

particle state is given by the 6-vector K = (P;,

Qi), i = 1,2, 0or 3, In terms of the 3-3 T matrix

RIT(E) Ifé'), the wavefunction corresponding to

an initial three-body state of momentum K’ is, with

E =K’2

8(p) = (2m)-3'K"P 4 (2023732 [ gz P R
x (E— K2 + ie)"1K|T(E)| k"), (1)

where the limit € — 0 must be taken after perform-
ing the integral,

Now the amplitude (K|T(E)|K’) contains discon-
nected terms of the form

3

T,= (2)3/2?:;6@: —P)Q;lt,(Q% +ie)lQ), (2)
1=

which give rise to contributions to ¢ of the form

3 .
Qd(ﬁ) — (2ﬂ)‘32-3/2 E XQ‘ (Y,) etPicxi . (3)
i=1

Here xq (Y) is the scattering part of a two-body
wavefunction corresponding to an incident momen-
tum Q. Thus we have

XQ (¥,) = (2m)=3/2 [dQ; e®i-%(Q} —Q;2 + ie)-1
X @Q1TQ? + i€)IQ,). (4)

For large Y, XQ(Y) falls off as Y-1, and so, in
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general, &,(5) has leading terms of order p-1 as
p—> w0,

The second-order terms in the multiple scattering
expansion of T contribute to the connected part of
T six terms that each contains a pole for certain
values of the external momenta, Typical of these
terms is T'13 given by
T13(R) = Q¢ (E — P2)|— 3-1/2(2P’ + P))
X (3-1/2(2P + P")|t5(E — P’2)|Q")
X [D(P) + ie]1,
where
D(P) = #[3 (E— P'2) — (P + 3:P')2]

(5)

(8)

We have written P, Q for P;,Q,, the final momenta
and P’,Q’ for Pj, Q3, the initial momenta. The
contribution of this term to ¢ is

213(5) = (2m)-9/23-3/2 [qpdQe’ P XY

X (E—P2 — Q2 + ie)-1T13, (n
whereX = X, is proportional to the distance be-
tween particle 1 and the 23 ¢c.m.,and Y = Y, is
proportional to the distance between particles 2
and 3.

Now let us assume that p — « in such a direction
that Y also becomes large, and leave the discus-
sion of the special case when this is not so until
later. We may approximate the integral over Q
in (7) by a familiar technique to obtain

®13(p)~ — 2-7/27-5/23-3/2Y-1 [4P e i9(B) ppy/

[D(P) +ie] as Y-, (8)
where
I(P) = (Y(E — P2)V/2/Y|t,(E — P2)|— 3-1/2
x (2P’ + P))(3-172(2P + P")|t5(Q'2)1Q")  (9)
and
J(P) = P+X + Y(E — P2)1/2, (10)

The asymptotic form of $13(p) may be further
simplified by considering a complex distortion of
the integration manifold P —» P + {6P(P), and search-
ing for a choice of 6P(P) that leads to a large,
negative real part of the exponent in (8) without
crossing the singularity at D(P) + ie = 0. This
requires at each P we be able to find 6P satisfying

6PVpg >0
and

SPvzD >0 if D =0.
Such a 6P will exist except at points satisfying
either of the conditions

(1) Vpg=0 an

(ii) D=0 and Vpg=—avpD with o >0.
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We expect to find a non-exponential-decreasing
contribution coming from the integral in the neigh-
borhood of any point satisfying either condition,

There is always just one point satisfying condi-
tion (i), and it is given by P, =XE1/2/p. If D(P)
# 0, the integral (8) may be evaluated by the
method of stationary phase to give the result

eiir/4 3/43_3/2(41r)_1p—5/2

213(p) ~ 5

x exp(i EV/2p) T13(EY/25/p), (12)

This p~5/2 dependence is completely analogous to
the result found in the case of a particle incident
on a bound pair,

The second condition leads to the equations, with

R=X/Y,

(E —
and

D(P) = 0,

They may be stated geometrically in terms of Fig. 1
by requiring C = D, where AC = (E — P2)1/2R and
the point B lies ona circle of radius [§ (E — P'2)]1/2,

P2)1/2R =P+ B(P + 3P’), B>0 (13)

FIG,. 1. Geometrical description of Eq, (13), whose solution
requires C = D. The radius of the circle is [J(E — P'2)]1/2,
and AC is (E — P2)1/2R,

The point D must lie outside the circle, For the
case drawn in Fig, 1, AD increases but AC decrea-
ses as AB increases, so that there is never more
than one solution to (13), and this is true of all
configurations, The limiting case arises when

C =D =B, sothatP = (E —P2)1/2Ror P =P, and
D(Py) = 0 For D(P,) < O there is one solution
P= P and for D(PO)) 0 there is no solution with
positive «, although the point P may still be de-
fined. The curve D(P,) = 0 in 5/p space forms the
boundary referred to above.

To evaluate the contribution to (8) from the region
near P = P, we choose a distortion of the contour
so that 6P+V,d> 0. This will cause the contour to
cross the pole at D(P) +ie = 0; what we require is
the residue at that pole, We may calculate this and
at the same time investigate what happens if R is
near to satisfying D(PO) = 0, by changing the vari-
ables of integration in (8). Let us choose axes so
that the first axis isalongQ, =P + +P’, the second
is perpendicular to Q, in the P’'Q, plane, and the
third perpendicular to both, Thus we have Q, =

NUTTALL

,Py,0),and we set P=P +

(g, 0,0) and P=(P
3 We now replace the variable

p withp = (Pl, Do, 03
b3 by g given by

q=P§+P§+(Qo+P1)2——

If the phase J (P) is expanded about the point P, we
find in terms of the new variables that

J(P) = — Fp3 — Alp, + Bq)2 — Cq? +qpY/2d

+ (@), (14)
where

A = (Y/2d3)[d2(1 + ) + P3],

B = YP,Py/4d3Q.A, (15)

C = Y(1 + B)(Bd? + E)/8dQ3[d2(1 + p) + PZ],
F=Y(Q1+ p)/2d,
and
D=—
with
d2 = FE— P2,

4
39>

The volume element in (8), dP, becomes

dP = dp ~ dp,dp,(dq/2Q).

With these substitutions, the integrals over p, and
p3 may be done immediately by the saddle-point
technique to give

813(p) ~ in-3/22-9/23-3/2Q51[(P)AF)-1/2y-1¢"®

x [2 gq Xl 4Cq? — gBY/2d)]

A bl (16)
— 34 + i€

If 8 > 0, a positive imaginary distortion of the
integration contour near g = 0 is required to give
the exponent in (16) a negative real part, S0 that we
must include the residue at the pole ¢ = —ze which
gives a contribution

$13(p) ~ 2-1 1/277‘1/23'l/zQall(f)(AF)-l/Z’

x y-1¢'9Py(p), (17)
This contribution to the asymptotic form of 13
falls off as p—2, and, if present, is the dominant
term. The next term of order p-5/2 is given by
(12),

When R is such that D(PO) is near to zero, it is not
correct to treat the two points satisfying conditions
(i) and (ii) of Eq. (11) separately. To obtain a
formula which shows how the asymptotic form
changes from the region of R with 8 > 0 to the
region with g8 < 0, we evaluate (16) exactly to give

q,lcs(f)) ~ 2—13/277—1/23-1/2Q61I(§)(AF)-1/2

- ei1r/4BY>

x y=1e'9(®) erfc( (18)
44dc1/2
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If 18l Y1/2 3> E1/4,the argument of the function
erfe is large and (18) becomes

$13(p) ~ 2-13/27-1/23-1/2Q11(P) (AF)-V2y-1i9P)

4C1/24 (ip? y2>]
37 “P{ieazc)) -

X [29(3) + (19)

The first term in (19) is (17), and it may be shown
that, provided E-1/6Y-1/3 3> [g|> E-1/4Y-1/2 the
second term is equal to (12) apart from corrections
which decrease faster than p—3/2, Thus we use

(19) for B in the range, say, |8l < E-5/24y-5/12 and
the sum of (12) and (17) for other 8.

To treat the situation when X — o, with Y remaining
fixed, we go back to (1), which may be written

313(p) = (27)9/23-3/2 [aP ™" *H(P,Y)/[D(P) + i€),

(20)
where
HP,Y) = JdQe'¥Y[E — P2 — Q2 +ic]!
x [D(P) + i 1IT13(K). (21)

An important contribution to (20) will come from
the neighborhood of the value of P for which D = 0
and X = — aV,D, o > 0. There is always just one
such value, and in fact it is given by the momentum
P defined earlier, worked out for the special case
in which R = X/V — o, The leading term in the
expansion of ®13(p) coming from the neighborhood
of P=Pis
®13(p) ~ — 2-11/29-5/23-1/2x-14(P, Y)

x exp{— i(3 P’ +X)—X[3(E — P'2)]1/2}

as X - oo, (22)
In view of (4) we may write H(P,Y) as
H(P,Y) = (27)3/2x (Y)(3~1/2(2P + P')|1,(Q'2)IQ"),

(23)

1899

with
q=— 3-3/2(2P’ + B).

It may be seen that as Y — « (22) merges into our
previous result (17) obtained for Y large.

For several reasons, such as the singularity of
H(P,Y) at P = P, the above analysis may break
down if E = P2 or E = 4P'2,

DISCUSSION

It is not hard to understand the physical basis for
the dominant contribution to &, given by (17).

After their collision, particles 1 and 2 propagate on
the energy shell, particle 1 having momentum
(2)1/2P, and then particles 2 and 3 scatter, Both
between the two collisions and from the collision
to the observation point, the wavefunction decrea-
ses by a factor proportional to p—1,leading to the
final p~2 dependence, In the special case described
by (22), there is only one factor p~1, since particles
2 and 3 have not traveled far since their collision,

To interpret Eq. (13), we rewrite it as

X — YP/(E—P2)1/2 = (P + 1P'). (24)
Since (E — P2)1/2 is proportional to the relative
momentum of particles 2 and 3 after their colli-
sion, Y(E — P2)1/2 is proportional to the time since
they were together, and Y(E — P2)-1/2P to the dis-
tance particie 1 traveled since then, Thus the left-
hand side of (24) is the position of particle 1 rela-
tive to the 23 c.m, at that time, and (24) requires
that this vector be proportional to the correspond-
ing momentum after the 12 collision,

It should be noted that Gerjuoy? previously obtain-
ed the p~2 dependence of & by a different argu-
ment, without going into the detailed behavior that
is presented here,

* Work supported in part by the Air Force Office of Scientific
Research, Office of Aerospace Research, U.S. Air Force,
under Grant No. 71-1979,

1 J. Nuttall, Phys. Rev, Letters 19, 473 (1967). Note that the
factor (3)1/2 in Eq.(3) of this paper should be (2)1/2,

2 E,Gerjuoy, J, Phys, B 3,192 (1970); “Configuration Space
Three~Body Scattering Theory” (unpublished).
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Certain aspects of the hydromagnetic and Kinematic dynamo theory related to the Earth's magnetic
field are considered. The work of Tough and Roberts [J. G. Tough and P. H. Roberts, Physics of the
Earth and Planetary Inteviors (North-Holland, Amsterdam, 1968), Vol. 1, p. 288] on the hydromagnetic
dynamo is extended in two respects. First, the most general form of the prescribed body force which

is consistent with the model is considered. Secondly, the mean quantity (S_) [see Egs. (18)] is deter-
mined up to order R"1/2, where R is the magnetic Reynolds number. It is shown that the remarkable
effective variables first introduced by Braginskii {S.I. Braginskii, Zh. Eksp. Teor. Fiz. 47, 1084 (1964)
[Sov. Phys. JETP 20, 726 (1965)]} are relevant in the hydromagnetic dynamo in the second approximation.
It is also shown by considering a related problem concerning the heat conduction equation that effective
variables are unlikely to have any relevance in the kinematic dynamo theory in the third approximation.

I. INTRODUCTION

It is now generally accepted that the Earth's
magnetic field is maintained by dynamo action.
Specifically it is supposed that magnetohydrodyna-
mic motions of the order of 1 mm sec™1, occur-
ring in the Earth's core, cause a self-excitation

of the magnetic field which sustains the field
against Ohmic decay.

Several models illustrating the kinematic dynamo
have been formulated (see Runcornl). Though
these models show conclusively the possibility of
dynamo action, it is beyond the scope of kinematic
dynamo theory to explain how a body such as the
Earth maintains the motions required for dynamo
action. Hence, for a full understanding of the
problem, the hydromagnetics must be considered.
Recently Tough and Roberts2? extended the Bragin-
skii3 formulation of the kinematic problem to in-
clude the equation of motion. A set of equations
[see (21)-(28)] and boundary conditions, which
describe the hydromagnetic dynamo, were ob-
tained. A numerical procedure was outlined for
solving the equations, but the calculation was not
attempted. However, Tough and Roberts2 found
that the remarkable simplifications which Bragin-
skii3 discovered for the kinematic equations occur
also for hydromagnetic dynamos. In this paper
the most general body force which is consistent
with the model is considered, and the simplifica-
tions are extended. No attempt is made to solve
the equations.

It is supposed that the fluid in the Earth's core
is incompressible:

Veu =0, 1)

and that the flow is governed by the equation of
motion:

iZXuz—VP+ij+EV2u+F. (2)
The magnetic induction equation is

%:Rv X (u X b) + V2b, 3)
and
v.b_—_—o, j:vxb. (4)

"The only dimensionless numbers characterizing

the flow are

E =v/2Q9L2, R =U*L/n, (5)
where E is the Ekman number and R is the mag-
netic Reynolds number. Neglect of the inertia
terms in (2) is justified provided both R, and RR,
are small, where

R, = n/2QL2. (6)

In Egs. (1)~(6), U*u is the velocity, B*b is the mag-
netic field, F*F is the body force per unit mass,
P is the dimensionless pressure, Lr is the posi-
tion vector, 9i, is the rotation vector (|i,|=1),
v is the kinematic viscosity, n is the magnetic
diffusivity, (L2/n)t is the time, and (B*/uL)j is
the electric current (¢ is the magnetic perme-
ability). The typical velocity U* and magnetic
field B* are taken to be

U* = F*/20, B* = (WL)1/2F*1/2, )
where p is the density. The scaling of U* and B*
is different from that adopted by Tough and
Roberts? since it is supposed that the body force
F appears as an order 1 quantity in the equation
of motion. It 4s assumed that

R>1 and .EX1. (8)
Since the Ekman number is small, it is likely that
viscous effects are confined to boundary layers
of thickness order E/2, Therefore it is natural
to seek a solution of Egs, (1)=(4) in two parts.
First, an interior solution is sought away from the
boundary where diffusive effects are small.
Secondly, this solution must be matched with the
solution valid close to the boundaries where dif-
fusive effects are important. Tough and Roberts2
conclude that the viscous boundary layer is to
first approximation an axisymmetric Ekman layer,
so that the velocity normal to the surface of this
layer is related to the tangential velocity by
the well-known Ekman layer condition (see Green-
span?). This consideration leads Tough and
Roberts? to assume that

R = O(E-1/2), (9)

This assumption is also made here.
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A solution is sought in the interior of the form

F = FP(R,p,z,t) +R-1/2F,(p! (p)z!t)

+R-1F,(R,p, 2, Di,, (102)
u=U(R,p,z,t)i, + R-V2u'(R,p, ¢,2,1)

+ R0, (R,p,2,1), (10b)
b = B(R,p,2,t)i, + R-Y2b'(R,p, 9,2, 1)

+R10,(R,p,z,1), (10c)

where p is the distance from the axis of rotation,
z is the distance along the axis of rotation, ¢ is
the azimuthal angle, and the suffix p denotes meri-
dional components. It is assumed throughout that
primed quantities have zero ¢ average:

(F) =0, 1)
where

<F”> = (Fpl>ip + <F1¢>i.p + (Fé}iz, (12)

1 27

N =5 Jy ra0.
The meridional components of the velocity and
magnetic field are also defined as

u, =VX(@i,), b,=VX(4i,). (13)

The body force is assumed to be given, and the
problem is to solve for u and b subject to suitable
boundary conditions.

The nature of the driving force F is uncertain. It
is possible that buoyancy forces resulting from
heating caused by radioactive decay are the domi-
nant forces. In this case the predominant part of
the force is likely to be axisymmetric, e.g.,as a
result of a temperature gradient between the equa-
tor and the poles. Hence R~1F, would vanish and
F, would be large compared to the asymmetric
forces. Braginskii® proposes an F, of precisely
this form, which leads him to an equation corre-
sponding to (23a). The possibility of a ¢ compo-
nent of F is naturally associated with the loss of
gravitational energy. If,for example,iron parti-
cles are sedimenting in the core, there would be a
tendency for the particles to drift towards the
east through the action of the Coriolis force, thus
contributing to a ¢ component of F¥. The mecha-
nism of stirring by sedimentation is favored by
Braginskii.?;é A consistent model may be formu-
lated in the absence of the axisymmetric body
force (see Tough and Roberts?), but not in the
absence of the nonaxisymmetric body force. This
suggests that the scaling depends crucially on
R-1/2F’ and that the values for (F) are the largest
consistent with the model. For this reason the
characteristic value, F*, of the force is determined
by the requirement that the fluctuating part,
R-1/2F’, of the force should be an order R~1/2
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quantity. Hence, if the fluctuating force is charac-
terized by F'#, it is equal to R"1/2F*  so that the
characteristic force F* is given by
F* = (L/2Qn)(F'*)2. (14)
The implied dependence of F, and F, on R in (10a)

indicates that these quantities may be smaller
than order 1.

Some notation is introduced. The operator 3,/3¢
is defined to avoid the differentiation of unit
vectors,

31, . . o e B,
a_&)(fplp +fol, Hfi,) = 5 b + kg + 5 Lt (15)
The operator ~ is defined by
94
Ny Y 16
" , (16)

where (f’) = 0, and results in the useful identity

N
‘21()‘?. e T e S =0 amn
i=
The following variables are introduced:
v = (1/00),, w=3p& X V'),
W = 30263 (v X 7)), (18)
G=u Xb', S=jXxXb,
where
i'=9vXbp. (19)
Since G and S have a symmetric part,the bar
operator
_ TN
G=[G— Q)] (20)

is introduced, which has similar properties to
the ~ operator. It is assumed that all quantities
have expansions in powers of R-1/2, A departure
is made from previous accounts in the scaling of
quantities. As in the definitions (10), quantities
are scaled so that they are order 1 where pos-
sible.

After considerable reductions of Egs. (1)-(4),
some equations can be determined for, the axi-
symmetric quantities in terms of the new effec-
tive variables:
A,=A+uB + R-{é?[(B/U2)v-(U2W)

— UW*V(B/ v)],

Y, =¢ +wU + R-1/2(1/U)V +«(U2W), (21)

F,,=F,—w(V X F,), + (o/B)’ X (vx F)),
— R-1/2{(V X F,) (1/U2)V +(U2W)
+(1/U)v+[U(v X F,) WI}.



1902 A. M.

In terms of these new variablés, the axisymmetric
quantities are governed by the equations

D B _pp+(v¥xvpa 2
thp— 1 VE vPe(p’ (2&)
12 cay_a JA_ +TB, 2
S oy bA,) = r (22b)
B z

= _p- + pg(pyt) —-% (f_(rg_pg)ljz(v X Fp)¢dz (232.)
_,2y1/2
__ff p2) v XFP)‘PdZ)’
= (1/p)(b,,*V)pB + F,, (23b)
where
2. _2 +u, vV =vV2Z—~1/p2
Dt =3 TV, 8:= P, (24)
w,= VX (¢’ei ¢), bep =V X (Aei (p)’
and?
-1 ’ fanlf} ( 4 al I) >
T=p-1((v X¥), +{v AL
+ 2V, (rev)*V,¥,) + OR"Y/2). (25)

For simplicity the bounding surface is assumed
spherical of radius ;. Moreover, (22) and (23)
are correct to order R-1/2, Equations (22) and
(23) are remarkable in as much as they are identi-
cal in form to the equations that result in the ab-
sence of asymmetries except for the term I'B in
(22b).

Most of the above equations are well known.
Braginskii3 determined (22) to lowest order, while
Tough® extended the definitions of effective vari-
ables so that the same equations remained valid
to order R-1/2, Tough and Roberts? showed
how effective variables were still relevant in the
equations governing the motion and obtained (23)
partially to lowest order. The new results are
obtained with the introduction of F, + R-1Fi,.
By defining an effective azimuthal force R-1F,,,
it is shown in the next section that (23) is correct
to order R-1/2, This contrasts with the Tough—
Roberts? introduction of the term
A= ol % (V% ), (26)
which is F_, to lowest order when F, = F,= 0.
Tough8 and Tough and Gibson? suggest that effec-
tive variables may be relevant to kinematic dy-
namo theory to higher orders;i.e., with a suitable
extension of the definitions of the effective quan-
tities to higher orders, Eqs. (22) remain valid. In
the last section the heat conduction equation is
considered and it is shown that in the third appro-
ximation the present simplifications are in no
sense possible. It follows that it is unlikely that
simplifications can be made to the magnetic in-
duction equation either,

Finally to close the system of equations, the non-
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axisymmetric parts of the magnetic induction
equation

b/
D~ RV x [u (Bi, + R™1b,) + (Ui, + R~1u,)

X b’] + RY2v X [G — (G)] + v2b’

Q
e

27)
and the equation of motion
i, Xu =—VP' +(VXb') X (Bi,+ R‘lbp) +[v

X (Bi, + R~1b,)] X b’ + R-1/2[S — (S)] + F’
(28)

must also be considered. The boundary conditions
are the same as those proposed by Tough and
Roberts, 2 with one exception: To order R—1/2,
Y and ¥, are no longer equal on the boundary. It
is not the purpose of this paper to discuss how
Eqs. (22)-(28) may be solved. The reader is
referred to Tough and Roberts? for a detailed dis-
cussion.

II. THE MEAN PART OF THE EQUATION OF
MOTION

The principal difficulty in obtaining Eq. (23) is the
determination of a suitable representation of the
mean quantity {S,) correct to order R-1/2, In
order that the method should not be obscured by
the algebra, many of the routine algebraic manip-
ulations are omitted. Two representations of the
meridional magnetic field and meridional electric
current provide the key to determining (Sw):

U

’ B ’ - re -
D% =5w +RT2[V X G, + OR™Y) (29)
and
B, _ W o VPB\_ [, . VPB\.o%
oI =—3; +b), v(lwx-—p > <1¢,x——-p )vﬁp
—R-12[y x 8], — [vx F'], + OR"Y), (30)

which are obtained from (27) and (28), respec-
tively. The latter representation appears to be
new and is obtained by taking the curl of (28),
taking the meridional components, and integrating
with respect to ¢. Another relation that is useful
is

B2

2(0-5)=—w@xF,,+0r,

o (1)

which is obtained by taking the ¢ component of

the curl of the mean part of the equation of mo-~
tion. Incidently (23a) is an immediate consequence
of (31).

Using (30) (S,) is given correct to order R~1/2 by
—<S>——<a"><b' +(B,v lwaPB)xb'>

(1% w8, ),

— R-Y2{(¥ X §), X b}), — {(V X F'), X b}),.
(32)
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In the first term b’ is replaced by the value given
by (29). The second and third terms are simplified
by use of relation (17). These alterations lead to

B _B 3 2 1 "X b iE)
p<S*">"pU 9z (U2w) 2B<b1’ bP>‘/’az p

B /. VPB. p2 ’ 1 >
+p—2'<‘¢x P )9 (55 ®, % By,

— at
-1/2 B L
+ R U<(V X G), X = ><ﬂ
—R-1/2((V X 8), X b)), — (VX F') X b)),

(33)
Evidently (29) leads to the identity
(o/2B2) (', x 5},>¢ —w + R-1/2(p2/BU?2)
X (VX G), X Ty (34)

correct to order R-1/2, Substituting (34) into
(33) and making use of (31) gives

d 1/ VpBw\, _
(Sy) =55 (Uw) ——75(1"’ X T) VoB—w(VXF,),

P nl ' -
—E<(VXF)pxbp></’+R 1/2

22 (@ x ), x 32,

1/, VpB p2B = ~
+E(Wx__z -v(_.Uz (W x G)pxup)¢>

2w x§), x b;,>¢] + O(R-1). (35)
At this point (23b) may be obtained correct to
lowest order.

In order to determine (S,) to order R~1/2 the last
three terms in (35) must be considered. However,
for these terms only the lowest-order approxi-
mations for b’ and j’ need be considered. Conse-
quently, to this order of accuracy,b’ and u’ are
related simply by b},/B = vw’,/U = v'. In evaluating
these terms the identity

i, X (vx{) =@/0)vf) — 1/p)f (36)
is useful. Now it is clear that
G = pU2(i, X v')v')¥'+B/U}, (37

to the required order of accuracy. Hence, by use
of (36) and (37) it can be shown that

_ W 3@/
p2 o, *__F’_<_P_.
BU <(V XGpX 5,)0=" B0\ %2 Gp>

__ 1 9 e .oB
=— 30 32 W) V5 (38)
and
2B - ~, B ..,
B (v X ©), % 6)), = — 55 @)G,)
- 3UB(W'V)I§I. (39)
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Repeated use of relation (17) is required to ob-
tain (38). The last term in (35) becomes

— (p/B){(V X §), % b)), = (1L/B)V+(pS b))
= (1/BVJ, +J, +J3),

where

(40)

-~

ﬁ aulp ’ nr
Ji="7% << 7z bﬂ>¢bﬁ>'
2 ooofs VpB , ,
v<1¢ x —p—> x bp} ¢BP>, (41)
Pz 1/ VpB . ’ ’ Hhy
Jsz“f [<I¢XT> VBpxbpjl qabp>‘

In obtaining (40) the value of i}, given by (30) is
substituted into S . Evaluation of J, is a little
awkward, although the values of J, and J; are ob-
tained in a way similar to (38). After some manip-
ulation,d,,J,,and J; may be convenienily ex-
pressed as

B 0
Iy =12 57 (U3W),
. VpB B23B
- 2W » Rl ot =212
3, = (Bwv)<1q,x , >+p By, )

7 3B2 3B
J, = <1¢ x g >-v(32W) —- W

Collecting together Eqgs. (35)—(42) gives an ex-
pression for (S ) in which all the means of pro-
ducts of fluctuafing quantities are given in terms
of w and W. However, some considerable simpli-
fications to (35) can still be made. In particular
Eqgs. (38)—(42) lead to the identity

| G S B_1(. . VpB B
— 2= 2 (UBW) v — % (i, X *V{3UBW-v=
sz @G (x5 o)

BU B

+=VeJ; + I, +J3)

(ge-ow)+ 30, %2)

'v[p <—l—9—2— vV (U2W) — UW*V %)]

(43)
which is an expression for the last three terms

of (35). Hence, after substituting the result into
(35) and making use of (31), (S,) becomes

() = = (¥, —¥) — (1/p?)i, X Vo(4, — A)]*VpB
+ (F,,—Fp) + O(R"1), (44)

where the effective variables (21) have been in-
troduced. Together with the ¢ component of the
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mean part of the equation of motion (2), namely
up = (l/p)(bp 'V)PB + F¢ + <s¢>s

this result establishes (23b).

(45)

. EFFECTIVE VARIABLES

A preliminary investigation is made to see whether
effective variables may be found which reduce the
mean part of the magnetic induction equation to

the form (22) correct to order R~1. Though it

will be shown that this possibility is unlikely, a
certain structure is beginning to appear [see (63)].
This structure will be fully exploited in a subse-
quent paper, and will indicate why effective var-
ables occur in the low-order approximations.

The amount of algegra involved in determining the
order R-1 terms that must be included in (22) is
immense, and the calculation has notbeen attempted.
Instead the related problem concerning the heat
conduction equation:

a0*

57 (46)

+ Ru-Vo* = V20*,

where 6* is a scalar quantity, is considered. A
solution is sought of the form

0* =O(R,p,z,t) + R-1/26'(R,p, 0,2,1), (47)
where u is given by (10b). As in the case of the
magnetic induction equation, it can be shown that
the mean part of (46) is given by

(D,/Dt)o = V28, (48)
correct to order R-1/2 where (D,/Dt) is the
effective material derivative (247, Evidently if
effective variables cannot be found that reduce the
mean part of (46)—(48), it is most unlikely that the
required simplifications can be made to the mag-
netic induction equation either, which is more
complicated and exhibits most of the features of
(46).

The equation for the mean part of (46) is

D8&/Dt + (@) = V2, (49)
where

2 = _a_ . — 7o ’

o =37 T U vV, Q=u"-ve. (50)
The equation for the fluctuating part leads to
Q ’-—-—A’. — _1/2—— —1 _D—’é;_ 2A’>
pe_uveR & —R DI v29'). (51)
Repeated use of (51) gives

@ =1, +R-12I, + R-1(I; +1,), (52)

where
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I, =— @' V[(p/V)a-v® ) = — (1/p)[V(oUw) X V8],

I, = @ «v{lo/U)u’' *V[(o/UV)a’ *VEI}

=— (1/p)[V{le/V)v - (U?W)} X vel,, (53)

Iy = — @' +V((p/Un’*¥{(o/ U’ * V[ (o/ V)i’ vOT}))
I, =— ﬁ'-vg% [—1% <%ii’ -ve) - v2<§’7a' -ve)]g> .

The expressions for I, and I, together with (49)
give (48).

In order to show that effective variables do not
exist at the next approximation, it is sufficient to
consider a planar modell9. In place of the coordi-
nates p, ¢, z the coordinates x*, y*, z* are intro-
duced, where x* = z, y*=p—p,, andz*=p,¢. The
limit p, — w is taken, and the asterisk is subse-
quently dropped. The simplification, though un-
necessary, does make the subsequent analysis
clearer.

Tensorial notationll is adopted to facilitate the
evaluation of ;. Relation (17) gives the identity

,1.,1.,1 .
0={u 7% T ‘6>ijkl. (54)
Differentiation with respect to the ¢ suffix is
carried out and use of (17) leads to
(1, 1.\ ,1.,
0=~ 6{(g v v 5 %) O
Lo, 1o, (e,
~s(wkuta(lvwve) , +3a 69
where
1. .N/1-,1.
o = (<u’°vﬁ uj> <ﬁ“k'ﬁ @ e).jkl' (56)

The above procedure is repeated (differentiation
with respect to the j suffix) and leads to

o -8 ulbwv(boe Ta) o

+6 (u; (lﬁ w' v lﬁal) lﬁa'-ve>' .

o libufhwo(prw)

+3a — 68 — 3y, (57)
where
= ((wobi) (barkvwo).
(58)

- [ ) oo (b ove)).

The procedure is followed for a third time (dif-
ferentiation with respect to the 2 suffix) and leads
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to the identity

O:—‘V'm) +13

+ o[l (o —v,) v(taw)]), 69

where

7 e _];_ l_ !a -1- A’)]
=~<u V[Uu V(Uu VUu >1,
~ 1 5’
se(bupsyv e, o
and u(go) is given by
’ 1 5/
w® =, ~ (v (5 ¥) ) ®v

The above definition of u(® differs from the lowest-
order approximation u,, only in the z component.

Setting® = 1 in (59) leads to the identity
VeV = 0. (62)

From the definitions (53) and the identity (59) it
follows that (49) is

(587 + (@, +R1IV)v — vz)e

o [bE ) (b wo)])

(83)

There appears to be no representation of the right-
hand side of (63) which is simpler than that given,
and it seems unlikely that effective variables exist
to this order. Before ruling out effective variables
completely, a precise definition is given of effec-
tive variables for the heat conduction equation.
Effective variables are said to exist if a quantity
€,(R,u;0) can be constructed which satisfies the
heat conduction equation

d
5?6«: + ue.b.vee = v.()\evee)’

(64)
where© is convected with a velocity u (R,u) in
a medjum whose diffusivity is A_(R,u). ﬁ‘he quan-
tities A ,,u,,,©, are effective variables. The
point of v1ew taken in constructing this definition
is that a function®, may be chosen which will
satisfy an equation ‘whose character is similar

to (46) in the case of planar (or axial) symmetry.
This is essentially the Braginskii® formulation.
Finally it is supposed that A, and u,, have unique
expansions in powers of R~ 172 , SO that

A, =1+R 1@,

, (65)
=u +R-Y2uQ) +R-1u®),

“el’

correct to order R~ where the first two terms

I, andl,.
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inu_, are given by (21). Since I and I, contain
only one time derivative and four space deriva-
tives, the most general forme,

6, =6 +R-1(c0+86,; +T,0,). (66)
Substituting this form of €, into (64) and making a

correspondence with (49) to order R-1 leads to
the identity

0
(5_2 + u(e(g vV — V2) (a® + Bie,i + Tije-ii)

+u@) VO — V-DVY =13 +1,, (67)
which must be satisfied for all choices of 6. Equat-
ing coefficients of the fourth-order derivatives of

O gives

Ti]. =— (1/U2)(ﬁ,.’12].’), i,7 =1,2. (68)
Then equating the third-order derivatives of ©
gives

(ﬁi - Til.l)ﬁ = T‘] %? Z)]yk = 172, (69)
where

6 1, j=¢k

®=30, j=k°
In general T, , = 0 whenj = k,in which case (69)

has no solutmn This estabhshes conclusively
that effective variables do not exist in the heat
conduction equation to qrder R~1,

It does not appear possible to make any direct
correspondence between the formulations (46),
(47), and (49) for the heat conduction equation and
that for the magnetic induction equation. However
the expressien for — (@) is very similar to the
expression for [V X (G),],, which is

<pu w (Af.v )> R-1/2
<pu -v[ '-v(g* wi )]> + 0(R-1).

The order R-1 terms are similar in character to
Exactly the same features encountered
above will occur in the magnetic induction equa-
tion, specifically in (22a). Therefore it is to be
expected that effective variables will have no rele-
vance beyond an accuracy of order R~1/2,

v x (@),],

(70)
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The ground-state energy of a spinless nonrelativistic electron in the field of two fixed spinless nuclei
with charges +2 and —1 is computed exactly for a large number of values of the internuclear separation.
The calculation is performed using a method devised many years ago by Baber and Hassé. The results
of this calculation are then used to estimate values, for a few highly excited states of an~¢~ and o K—e~
atoms, of a correction to a previous calculation of the binding energy. This energy correction increases,
by one unit, a previous estimate of the multipolarity of the most favored Auger transition from a cir-
cular orbit of the aK~e~ atom with n = 29; a similar increase is found to be most likely for circular
orbits of the an~e~ atom with » = 20 and circular orbits of the ape~ atom with » = 32, 35, and 37. For
aK~¢~ atoms with n = 27 and 29, the energy corrections cause the calculated energy difference between
a circular and a nearly circular orbit with the same principal quantum number to be between 15 and
30% smaller than had been estimated previously. Two other corrections are estimated and are found

to be probably negligible. One of these corrections is the inaccuracy in the calculated binding energy

of a heliumlike mesonic atom, as obtained using the Born-Oppenheimer approximation, which is asso-
ciated with the angular correlation between the positions of the electron and the meson. The other
correction is the change in the computed value of the mean meson orbital radius which occurs when the

interactions responsible for the electron-meson angular correlation are taken into account,

1. INTRODUCTION

This paper is concerned with the binding energies
and wavefunctions for some highly excited states
of heliumlike mesonic atoms. Its purpose is to
present a more accurate treatment than has pre-
viously been givenl:2 of the effects of the dipole
and higher-multipole electrostatic interactions

of the electron with the meson in such atoms.
References 1 and 2 are referred to in this paper
as I and II, respectively.

Two corrections are made to the binding energy.
The more important of these corrections is found
in Sec. 2 by using the results of an exact calcula-
tion of the ground-state energy of an electron in
the field of two fixed particles with charges +2
and —1. This exact calculation is performed using
a method developed many years ago by Baber and
Hassé.3 The energy correction obtained in Seec. 2
is, in each instance, rather different from an esti-
mate of the same quantity made in I, where some
very rough approximations were employed.
Furthermore, the difference between the values
of this energy correction for two almost degen-
erate states with thé same principal quantum
number is not, in any instance, even qualitatively
similar to the estimate of this difference obtained
in I. Nevertheless, the use of the more accurate
energy correction does not appear to change sig-
nificantly any conclusions reached earlier.

The other energy correction is associated with the
Born-Oppenheimer approximation, which was
used in I to compute the atomic wavefunctions and
binding energies. The accuracy of this approxi-
mation has already been investigated, to a certain
extent, in II, where it was assumed that only the
monopole electron~meson interaction is effective.
In Sec. 3 of the present paper, a very rough esti-
mate is made of the extent to which the accuracy
of the Born—-Oppenheimer approximation is affec-
ted by that distortion of the electron wavefunction
which is due to the dipole and higher-multipole
electron—meson interactions. It is found that this
energy correction is likely to be negligibly small.

Finally, in Sec. 4, a very rough estimate is made
of the extent to which these dipole and higher-
multipole interactions might cause some previous
estimates of the mean meson orbital radius to be
in error. This correction is also found to be
probably negligibly small.

In each instance that is considered, the electron

is in a 1s orbit, and the meson is in a circular or
nearly circular orbit with large principal quantum
number ». In a circular orbit, the orbital angular
momentum [ is given by [ =n — 1. For the sake
of brevity, a state of the mesonic atom in which
the meson is in a circular or nearly circular
orbit, and in which the electron is in a 1s orbit,

is frequently referred to in this paper simply as a
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The ground-state energy of a spinless nonrelativistic electron in the field of two fixed spinless nuclei
with charges +2 and —1 is computed exactly for a large number of values of the internuclear separation.
The calculation is performed using a method devised many years ago by Baber and Hassé. The results
of this calculation are then used to estimate values, for a few highly excited states of an~¢~ and o K—e~
atoms, of a correction to a previous calculation of the binding energy. This energy correction increases,
by one unit, a previous estimate of the multipolarity of the most favored Auger transition from a cir-
cular orbit of the aK~e~ atom with n = 29; a similar increase is found to be most likely for circular
orbits of the an~e~ atom with » = 20 and circular orbits of the ape~ atom with » = 32, 35, and 37. For
aK~¢~ atoms with n = 27 and 29, the energy corrections cause the calculated energy difference between
a circular and a nearly circular orbit with the same principal quantum number to be between 15 and
30% smaller than had been estimated previously. Two other corrections are estimated and are found

to be probably negligible. One of these corrections is the inaccuracy in the calculated binding energy

of a heliumlike mesonic atom, as obtained using the Born-Oppenheimer approximation, which is asso-
ciated with the angular correlation between the positions of the electron and the meson. The other
correction is the change in the computed value of the mean meson orbital radius which occurs when the

interactions responsible for the electron-meson angular correlation are taken into account,

1. INTRODUCTION

This paper is concerned with the binding energies
and wavefunctions for some highly excited states
of heliumlike mesonic atoms. Its purpose is to
present a more accurate treatment than has pre-
viously been givenl:2 of the effects of the dipole
and higher-multipole electrostatic interactions

of the electron with the meson in such atoms.
References 1 and 2 are referred to in this paper
as I and II, respectively.

Two corrections are made to the binding energy.
The more important of these corrections is found
in Sec. 2 by using the results of an exact calcula-
tion of the ground-state energy of an electron in
the field of two fixed particles with charges +2
and —1. This exact calculation is performed using
a method developed many years ago by Baber and
Hassé.3 The energy correction obtained in Seec. 2
is, in each instance, rather different from an esti-
mate of the same quantity made in I, where some
very rough approximations were employed.
Furthermore, the difference between the values
of this energy correction for two almost degen-
erate states with thé same principal quantum
number is not, in any instance, even qualitatively
similar to the estimate of this difference obtained
in I. Nevertheless, the use of the more accurate
energy correction does not appear to change sig-
nificantly any conclusions reached earlier.

The other energy correction is associated with the
Born-Oppenheimer approximation, which was
used in I to compute the atomic wavefunctions and
binding energies. The accuracy of this approxi-
mation has already been investigated, to a certain
extent, in II, where it was assumed that only the
monopole electron~meson interaction is effective.
In Sec. 3 of the present paper, a very rough esti-
mate is made of the extent to which the accuracy
of the Born—-Oppenheimer approximation is affec-
ted by that distortion of the electron wavefunction
which is due to the dipole and higher-multipole
electron—meson interactions. It is found that this
energy correction is likely to be negligibly small.

Finally, in Sec. 4, a very rough estimate is made
of the extent to which these dipole and higher-
multipole interactions might cause some previous
estimates of the mean meson orbital radius to be
in error. This correction is also found to be
probably negligibly small.

In each instance that is considered, the electron

is in a 1s orbit, and the meson is in a circular or
nearly circular orbit with large principal quantum
number ». In a circular orbit, the orbital angular
momentum [ is given by [ =n — 1. For the sake
of brevity, a state of the mesonic atom in which
the meson is in a circular or nearly circular
orbit, and in which the electron is in a 1s orbit,

is frequently referred to in this paper simply as a
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circular or nearly circular orbit. The numerical
calculations reported in the present paper are,
for the most part, concerned only with a few states
of the an~e~ and a K¢~ atoms.

The particular notation employed here is chosen
to permit a ready comparison with previous work.
The unit of energy is the rydberg; the unit of dis-
tance is the hydrogen Bohr radius; and the unit of
mass is the electron mass.

2. MORE ACCURATE BORN-OPPENHEIMER
ENERGIES

A. Introduction

It was shown inI that the wavefunction for a helium-

like mesonic atom is given rather accurately by a

solution of the equation
Hy¥yr,x,) = E,¥r,T,), (2.1a)

4 1 4 2
—_——yg2_2 __~g2_2%
SRR A A A AR LA
(2.1b)

The positions of the electron and the meson with
respect to the a particle are denoted by r, and r,
respectively. The reduced mass of the meson and
a particle is denoted by M.

If the Born—-Oppenheimer approximation is used
to solve Egs. (2. 1), the wavefunction ¥, is given
approximately by

1, T,) = ¢5(r, ) upr, ), (2.2)
where the meson wavefunction ¢b is defined by
the equation

Hy¢5(r,) = Ejg5(r,), (2. 3a)
H:=—1%VE _,',_4+ Ebde('rp)' (2.3b)
n

The 1s electron wavefunction u,,, and the energy
Ey4{r,) are defined by the equation

Hpgotpae (T T,) = Epp 7, )upy (T, 1), (2.43)
4 2
Hbae=“V§“‘,,_e+]T_T“r. (2. 4b)

The eigenvalue E: in Eq. (2. 3) is an approximate
value of E,. Equations (2.2)-(2. 4) do not appear
in I because at the time those papers were written
it was not realized that Eq.(2.4) can be solved
exactly.

Instead, in I, an equation similar to (2. 3) was
solved. This equation is

dv, dv

B ¢2r,) = EX92x,), (2. 52)

1 4
HY =—3: V2 -7 Egof,). (2. 5b)
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The eigenvalue Edv is an approximate value of E‘;
The function E, ev('r ) is an approximate value of the
ground-state elgenvalue of the equation

(2.6a)

Hdeude(re’ 7;1) = Ede(rp)ude(re’ ’Vp),

PRI S L T A NP
ae C T\, v, >,

e

The function E, (r ), which is a variational esti-
mate of E, (r,), is obtained by approximating u,,
with a 1s hydrogenic function, the variational para-
meter being the effective nuclear charge. This
variational wavefunction is denoted by #;,,. The
operator H,, is similar to H,,,, the only differ-
ence being that the dipole and higher-multipole
interactions between the electron and the meson
are neglected. The neglected interactions, which
will be denoted by H’, are given by

o0
= 2 H, (2.7)
p=
where

+1
H - 8t <rf/rﬁ , r,,,<7"J
- b, b+l
2p +1 'r“/re , ’Ve>?’u

Yp,m(ffe).

X ;& Y¥.7,) (2.8)

B. Correction to Binding Energy

Because of the substantial amount of labor that
would be required, it was decided not to perform
another Born-QOppenheimer calculation in order
to determine E,. Instead, Eq. (2. 4) was solved
for a large number of values of Yy and then the
wavefunctions ¢, ¥ obtained in I were usded to est1-
mate values of the energy difference £, — E * with
first-order perturbation theory. This energy
difference is assumed to be given approximately
by

Ef— E¥ ~ 6E®, (2.9)
where
= J102 @) 2[Epar,) — Egpolr ))dr .
(2.10)

Because Baber and Hassé3 have described their
method of solving Eq. (2. 4) in considerable detail,
only a brief outline of the calculation of E,,,(r )
is presented here. Equation (2.4) is separable

in prolate spheroidal coordinates. Consequently,
U4, May be written as the product of three func-
tions. One of these functions is ‘"% (2m)1/2,

where m is the azimuthal quantum number. Baber
and Hassé represented each of the other two func-
tions, which are both real, by an infinite series of
terms of a judiciously chosen form.4 In each
series, the terms have coefficients which satisfy
a three-term recurrence relation. It can be shown
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that, for solutions with coefficients having accept-
able asymptotic forms, both recurrence relations
are equivalent to infinite continued fractions.

Both of these infinite continued fractions relate
and E,;, to m and the other separation con-
sgant which is denoted by A. For a given value of

7,, the ground-state binding energy is the lowest
value of E,,;, for which both fractions are satisfied
by m = 0 and the same value of A.

It can be shown that each of the infinite continued
fractions is equivalent to a series for A in posi-
tive powers of v, and E,,;,. However, as noted by
Baber and Hassg these series converge rather
slowly in some mstances. A tedious algebraic
calculation would be required to derive series for
A which are carried to orders high enough to ob-
tain a sufficiently accurate solution to Eq.(2.4)
for all necessary values of »,. Consequently, in
the investigation reported here, each fraction was
truncated after a suitably large number of con-
tinuations, which is essentially equivalent to em-
ploying convergent series. A computer was then
used to determine E,,, by trial and error.

Figure 1 shows F,,, — E,,, as a function of »,. The
energy correction 6E_ is given in Table I for
several circular and nearly circular grblts of the
ar~e~ and aK~e¢~ atoms. Values of E, , which

are taken from I, and the resulting est1mates of

L e e L

Epde ~ Edev 7
[ Ee, " Egey
§-0.2— Eeo " Edey ~"77 A
- L
2
FIG.1. Energy differences I
Epge— Eger Eep1 — Egon and g
E, o —E;zna8 functions of Yy =
>
(&)
o
(1]
=z
re il
[Ke} 20
r IN HYDROGEN
BOHR RADI

TABLE 1. Approximate binding energy Ef ~ E2* + 6 E%° for
some circular and nearly circular orbits of an~e~ and aK-e~
atoms. Orbits withl =#» — 1 and / = » — 2 are grouped sep-
arately.

e 6ES” ES
Atom n 1 (Ry) (Ry) (Ry)
an-e~ 18 17 —4,9238 —0.132 —5.056
17 16 —5.1491 —0.165 —5.314
16 15 —5.4865 —0.170 —5. 657
15 14 —5.9541 —0.156 —6.110
18 16 —4.9873 —0.121 —5.108
17 15 —5.2235 —0. 147 —5.371
16 14 —5.5534 —0.159 —5.712
15 13 —6. 0087 —0.155 —6.164
aK-e~ 29 28 —5.4267 —0.175 —5.602
28 27
27 26 —5.9420 —0.157 —6.099
29 27 —5,4682 —0.166 —5.634
28 26
27 25 —5.9743 —0.156 —6.130
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E‘;, as obtained using the approximate equality
(2.9), are also given in Table I, Although the
energy E_ Y was computed to an accuracy of 10-4
Ry, the values of 6E4Y and E¢ are only given to an
accuracyof10-3 Ry,because itis believed that the
numerical evaluation of the integral in Eq. (2. 10)
is, in each instance, probably not accurate to much
better than a few tenths of a percent.

These energy corrections supersede the results of
some previous attempts made in I and II. In each
instance, the magnitude of 6E.° is more than five
times larger than that of a correction given in II,
where a similar estimate was made using the wave-
function ¢ .’ and first-order perturbation theory,
but with the energy difference E,,—E,,, as the
perturbation instead of E,,,—E,,,. Obviously, re-
placing the electron wavefunction u ,, with the
variational function u ,,, causes a much smaller
error in the estimate of the atomic binding energy
than neglecting the interaction H’.

For circular orbits of the gK~e~ atom with n = 27
or 29, the magnitude of GEg" is two or three times
larger than that of either of two energy correc-
tions calculated in I, where the interaction H’ was
taken into account and where the resulting distor-
tion of the electron wavefunction was approximated,
in a very rough fashion, by one or the other of two
functions having fairly simple analytic forms. It

is apparent that the use of the distorted wave func-
tions developed in I should generally lead to cor-
rections that are, at best, only qualitatively reliable.

C. Effect on Auger Rates

Auger rates for the mesonic atoms being con-
sidered here depend sensitively on the multipole
order of the transition.5~7 Transitions with mul-
tipole orders differing by one unit generally pro-
ceed with rates that differ by a factor of ~103,
The kinetic energy k2 of an electron ejected in a
transition of multipolarity L from a heliumlike
mesonic atom in a circular orbit with principal
quantum number » and binding energy E, is given
by

(2.11)

2 —

if, in the final state, the meson is also in a cir-
cular orbit. For a circular orbit, the multipole
order L, of the mogt favored transition is equal
to the magmtude of the lowest energetically allow-
ed change in the meson principal quantum num-
ber,

The lowest allowed values of L were estimated

in I for a large number of circular orbits of
an~e-, aK-e~, and ape~ atoms by replacmg E,
in Eq. (2 11) w1th a variational energy E found
by using a simple two-parameter wavefunctlon
The variational wavefunction, which is denoted by
¥, is the praduct of two hydrogenic functions, one
of which describes a 1s electron with effective
nuclear charge z, and the other,a meson in a cir-
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cular orbit with principal quantum number » and
effective nuclear charge Z. The variational para-
meters are z and Z. Estimates of k2 obtained in
this manner are denoted by (k.)2. Because E, >
E,, the estimates of L, obtained in I are lower
limits to the actual values.

The results given in Table I and Fig.1 md1cate
that, in a few cases, the energy correction oE

large enough that the lowest energetically allowed
value of L is one unit greater than the estimate
obtained in I, prov1ded it is assumed that the energy
difference E,, Ea is negligibly small. For the par-
ticular circular gorbits listed in Table I, a revised
value of L, is necessary only in the case of
aK~e~ atoms with » = 29, for which L ;, = 5 in-
stead of 4. Although no detailed calculations have
been performed, a comparison of the values of
(k)2 with the values of the energy difference E ¢’—
E¥given in I and with the behavior of the energy
difference E,;,—E ., shown in Fig.1 indicates that
the other circular orbits for which L ;, is one
unit larger than had been estimated in I are ape~
atoms with » = 32, 35, and 37 and an~e~ atoms
with n = 20, The rough estimates of the energy
difference E,— E,‘,i made in II and in Sec. 3 of the
present paper are not large enough to alter these
conclusions.

- d
D. Energy Difference ¢,

Table Il gives the difference e‘;between the values
of E, for a circular and a nearly circular orbit

TABLE II. Energy differences eg", ée'zv, and ei for some prin-
cipal levels of an—e~ and aX-e~ atoms.

dv dv d
€, be, €,
Atom n (Ry) (Ry) (Ry)
ane~ 18 —0.0635 0.012 —0.052
17 —0.0744 0.017 —0.057
16 —0.0669 0.012 —0.055
15 —0.0546 0.001 —0.054
aK-e~ 29 —0. 0415 0.010 —0.032
28
27 —0,0323 0.001 —0.031

with the same principal quantum number ». This
energy difference is defined by

d
€y = Ey pp — Ep pu1s (2.12)
where the dependence on [ of the e1genva1ue of Eq.
(2. 3) is indicated by denotmg it by Eb ; rather than
by E The values of eb given in Table II were
found using the estimates of E;, given in Table I.
For the purpose of comparison, Table II also lists

values of €%’ and 6¢2”, which are defined by

d

C= Ec.n-2 Ec =1 (2.13)
and dv d a
bey =€y— e (2.14)
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The notation employed in Eq.(2.13) is similar to
that of Eq.(2.12).

In both instances, the value of e: given for the
aK~e~ atom in Table II is between 15 and 307,
smaller in magnitude than the estimate of this
energy difference given in I, where it is denoted by

. This surely weakens the arguments presented
in I and elsewhere®,8 to the effect that a Stark
transition from a highly excited circular orbit of
this atom is not likely to occur during a collision
with a He atom in a bubble chamber. Nevertheless
provided the energy difference E, — E? can be ne-
glected, these arguments are probatbly not weaken-
ed very effectively: The values of €, are still con-
siderably greater in magnitude than the estimates
of the Stark matrix element made in Ref. 8, and
they are also still large enough so that a very sub-
stantial change in the magnitude of the relative
linear momentum of the two atoms probably must
accompany a Stark transition.

The method by which the correction to eg" was
obtained in I is unreliable, Unlike the values of
GE ¥ given in Table I, the values of the correction
edv given in Table II are not even qualitatively
similar to the corresponding estimates given in
I, since even the signs are different in each case.
The reason for this discrepancy is that while,in a
perturbation calculation, approximating the per-
turbing interaction and replacing the absolute
square of a wavefunction with a § function, which
are essentially the approximations that were made
in I, may, in some circumstances, lead to an energy
correction that is more or less qualitatively accu-
rate, it is much less likely that the difference
between the results of two such calculations will
be reliable, particularly if this difference is rela-
tively small,

E. Approximate Representation of Distortion of
Electron Wavefunction

Because the approximate electron wavefunctions
developed in I to take into account the effects of
the interaction H’ lead to only qualitatively re-
liable estimates of 6Ed and to entirely wrong
estimates of 66‘: ,and because these same wave-
functions, or a generalization of one of them, are
employed again in Secs. 3 and 4 of the present
paper to make some rough estimates of other
corrections, it seems worthwhile to investigate
somewhat further the extent to which their use
may lead to results which are only poor, rather
than totally inadequate. The two approximate solu-
tions developed in I were found by using normal-
ized variational wavefunctions of the form

udr,, r,) =ug,f(r,, 7)1 +alr,)g(r,,r,)]

X [1+80r,)a2r,)]-1/2, (2.15)

where, for a given value of T8 is the product of
'r 1' and a smoothly varying function of »,. The
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quantity a, which depends on 7y
parameter, and ¢ is defined by

,1s a variational

C(’V“) = f[udeu(re"ru)g(re, r#)]sze' (2. 16)
The two choices of g used in I are
a7, /72 =T > A
gl(rg’ l-‘) = 27 { “’ ¢ ) (20 17)
“/re, ’Ve —7, > A

where A is an exceedingly small, positive quantity,
and

gz(rer rli) = 2';e . ;“
r, /r2)1—~(3r,)/(5r )], r, <7

(r, /r2)1 —

oe18)

(3r,)/(57,)], v, >7,

In addition to the energy difference E,,;, —
Fig.1 also shows E, { — E;,,and E, , — E,,,,
where E, , and E,_ , are, respectively, the electron
variational bmdmg energies obtained with g =g,
and g = g,. These two energy differences, which
are roughly equal, are both substantially smaller
than E,,, — E,,,, thus indicating that «_, with
either g = g, or g = g,, gives a poor, but probably
not completely unacceptable, approximation to that
distortion of the electron wavefunction which is
due to the interaction H’. Although all corrections
obtained employing either form of «, should be
interpreted with a certain degree of caution, it
seems reasonable to assume that the use of such a
function should lead, in most instances, to results
which are at least qualitatively reliable.

Edev:

3. ACCURACY OF BORN-OPPENHEIMER
APPROXIMATION

If only the monopole part of the electrostatic inter-
action between the electron and the meson is effec-
tive, as is assumed in Eq. (2. 6), the angular motion
of one of these particles is not coupled to that of
the other, and the wavefunction for the mesonic
atom may be written as the product of a correlated
radial wavefunction and two spherical harmonics.
The argument given in I to justify the use of the
Born-Oppenheimer approximation in calculating
this radial wavefunction is that the rms radial
velocity of the meson is two orders of magnitude
smaller than that of the electron in most of the

instances considered. The accuracy of this approxi-

mation, insofar as it is applied only to the radial
motion of the two particles, has been investigated
in II and has been found to be rather good. But
with the more accurate description of the motion
of the electron given by the wavefunction u,,, it
seems appropriate also to estimate that inaccu-
racy in the Born~Oppenheimer energy which is
associated with the angular correlation between
the electron and the meson, because the rms velo-
city of the meson, as distinct from its rms radial
velocity, is only little more than one order of mag-

AND J. E. RUSSELL
nitude smaller than that of the electron in most of
the instances investigated.

The method employed here to estimate this energy
correction is a straightforward generalization of
the one used in II. Therefore, the discussion given
here is not overly detailed. - Although a formal
expression for the energy correction will be given
in terms of the function u,,, , numerical values
will be estimated using the much more tractable,
but considerably less accurate, electron wave-
functions developed in I to ta.ke into account the
effects of the interaction H’.

The energy difference £, — E: should be given
approximately by

Judx(

where Ho »o 18 an operator of which \Il:is an exact
eigenfunction with eigenvalue F,. It is readily
verified that the operator

— B~ »— Hy, )V ydr jdr (3.1)

d 1 /(2 d 1
Hbo =}Ib +M (i’_d Vu(pb.vp Upge T _—evgubde)
b
(3.2)
satisfies the equation
d _d d_d
Hy, Wy = Ey ¥y, (3.3)

Accordingly, the approximate expression for.the
energy correction is

E,— E,,_———f(zwb V0809 e

dx  d

+ ¢bv2ubde)dT dr,. (3.4)

Because the ground-state electron wavefunction
%44, is real, and because it is normalized to unity
for all r,,it is possible to show, in a manner ana-
logous to that outlined in II, that (3. 4) may be put
in the form

By~ Ey = 30 [ 1099 2y, \2r 07, (3.5)

It is convenient to rewrite the approximate equality
(3. 5) in the form

E,— Ej ~G8E] , +06E; q, (3.6)
where
1
d f|¢b 81' Uy, 12d7 54T s (3.7)
d 1 d 0
SEy 0 =13 / Iy 12 [(,‘,p—ae—ﬂubae> 2
9 2
+ <m’ubde) :] dT”dTe. (3. 8)

An approximate expression for GE,, , may bgvfound
by replacing ¢, and «,,, in Eq.(3. 7) with ¢, and

% 4.0, T€Spectively. Values of this approximate
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expression were computed in II, where it was
denoted by 5 E“. There appears to be little reason
to believe that the use of more accurate wave-
functions would substantially improve this approxi-
mation to 5Eb

Unlike GEbr, the term GE,, o vanishes if there is no
correlation between 7 ¥, and 7 7,. Consequently, it is
necessary, in this instance, to take into account the
angular distortion of the electron wavefunction. It
seems unlikely that inserting a doubly infinite
series for u,,,, as given by Baber and Hassé, into
Eq.(3.8) would lead to anything that could be
easily evaluated. Therefore, it is assumed that
the electron wavefunction may be approximated
with a function of the type specified by Eq. (2. 15).
A straightforward calculation shows that the re-
sulting approximate expression for 8 E; , is

6By~ Z [loar 7% () g, (x,,7,)

x glr,, r)]? [1+ t;(rp)az(rp)]‘ldrpd're . (3.9
It will now be shown, by making some further
approximations, that 6 E, , is surely rather small
in each case of any mterest thereby eliminating
the need of a more elaborate calculation. For the
sake of simplicity, only circular orbits are con-
sidered. For the large values of n being consi-
dered here, the meson radial wavefunction is
sharply peaked in the neighborhood of the mean
meson orbital radius #¥,. Therefore, because the
integrand in Eq.(3.9) cfoes not change sign, it
seems reasonable to assume that a very large
error will not arise from replacing the argument
of the functions a § uy,,,and g with 7, Itis
afso assumed that ¢ ¢ » may be sat1sfactor1fy approxi-
mated by a hydrogenic function characterized by
the effective nuclear charge Z. The energy correc-
tion is then given approximately by

Ol g~ MZRC )
w3 — D1 +LF,) a2(7,)]

(3.10)

Values of a(¥,) and {(7,) were computed in I, using
both g =g, and g =g,, for the circular orb1ts of
the aK~e~ atom with » =27, 28, and 29. Table III
gives approximate values of GEZQ for these orbits.
The corrections are denoted by either GEZQ 4 OT
6Eb .2, depending on the function used for g. The
values of Z employed in the calculation are those
which were determined in I using the variational
wavefunction ¥;. The estimates of Ej , are an

TABLE II. Energy corrections GE,, o 6E,, a,1> and 5Eb q,2 for
some circular orbits of the aK—e- atom.

d

OE} 8E}; E; 5
n (Ry % 10- 4) (Ry x 10‘5) (Ry x"10-5)
29 7 3 5
28 3 5
27 9 3 5
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order of magnitude smaller than the approximate
values of 6Ed , which were computed in 1I and
which, for the purpose of comparison, are given
again in Table III. It is entirely possible that the
use of more accurate electron wavefun%tions might
result in rather larger estimates of E, 5. And

it is certain that the difference in the meson mas-
ses causes this energy correction to be several
times larger for an—e~ atoms than for aK-e~
atoms of comparable energy. Nevertheless, it
appears most unlikely that a more elaboratedcal-
culation would result in estimates of E, — E, large
enough to change significantly the conclusions
reached in Sec. 2.

4, CORRECTION TO MEAN MESON ORBITAL
RADIUS

The distortion due to the interaction H’ has been
estimated for the electron wavefunction, but not
for the meson wavefunction. It was argued in I
that the relatively large mass of the meson should
prevent its wavefunction from being distorted
nearly as much as that of the electron when H’ is
taken into account. Nevertheless, it seems worth-
while to obtain a rough estimate of the correction
to the mean meson orbital radius, because the inter-
action between the mesonic atom and a He atom,
which was estimated in Ref. 8 for a few cases of
special interest, depends to some extent on this
radius. However, because the dependence is not a
very sensitive one, it should suffice to demonstrate
that the correction is likely to be quite small. As
in Ref. 8, only circular orbits are considered here.

An accurate way of determining the correction
would be to solve Eq. (2. 3) numerically and then
to compare thedmean radius obtained usm% the
wavefunction ¢, with that obtained using ¢, .
However, the determination of E,;, requires a not
entirely negligible amount of computer time for
each value of 7, For the highly excited circular
orbits being considered here, the meson radial
wavefunction varies so rapidly with 7, that a very
small step length is required for the numerical
integration. Consequently, it was decided to esti-
mate the correction by generalizing some rela-
tively simple variational calculations described
in I.

A three~parameter variational wavefunction was
employed in the calculation described here. This
function has the form

¥y(r,,r,)

S Y 2 ” /2
=¥ (r,,r,)[1 +aG(r,, 7,7 )|/N2.

(4.1)

In Eq. (4. 1), as in previous work, \Il’; denotes the
product of two hydrogenic functions, one of which
describes an electron-in a 1s orbit with effective
nuclear charge z, and the other, a meson in a cir-
cular orbit with principal quantum number » and
effective nuclear charge Z. However, in this in-
stance, in order to be able to construct the function
G in such a form that it is obviously a generaliza-
tion of the function g, defined by Eq. (2. 17),it is
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assumed that the azimuthal quantum number of the
meson is zero in the state ¥,. The function G is

given by
G(r,,7,,7,) = [2(3M)1/2/C(I’,1,1;0,0)]

- =
o {re/rp, T, —T, > A
re

-7, > A} [Yl-o(;p)]-l

r,/72,

XL CW, 1, m! = m)Y 1 (7 )Yy r(7,),
mit
(4.2)
where A is an exceedingly small, positive quantity
and where

l=n-—-1, (4.3)

I'=1%1, (4.4)
The quantity 7 , which is the mean meson orbital
radius for the state ¥, is given in terms of Z by

7, = nln + 3)/(M2). (4.5)

The Clebsch-Gordan coefficients in Eq. (4. 2) are
expressed in the notation of Rose.? If, in Eq. (4. 2),
¥  is replaced with» and if 7 is assumed to be
in the direction of the positive z axis, the quantity
G becomes identical to [(21" + 1)/(21 + 1)]1/2 g,
The quantity N in Eq.(4.1) is a normalization fac-
tor. The variational parameters for the wave-
function \I/',’, are z,Z,and a.

The wavefunction ¥, which is obviously an eigen-
function of the total orbital angular momentum
operator for the two particles, is orthogonal to the
wavefunctions for all states with total orbital an-
gular momentum different from [, thereby making
possible a variational calculation, The function
\I’Z takes into account approximately not only the
distortion of the electron wavefunction, but also,
by means of the parameter Z, the possibility that
the interaction H’ may distort the radial meson
wavefunction. The wavefunction ¥, is to be com-
pared with the two-parameter variational function
employed in I, which is of the same form as ¥,
and which is also denoted by ‘Il’c', but which is not
necessarily characterized by the same values of
z and Z. The difference between the optimum
values of Z for these two variational wavefunctions
should lead to a rough estimate of the correction
to the mean meson orbital radius.
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The parameters z, Z, and a are determined by
minimizing the value of the integral

P2 3 v
Sy B, ¥dr dr,.

Because of the particular form chosen for ¥,
only the monopole, dipole, and quadrupole electron—
meson interactions have to be taken into account.
In a somewhat similar calculation described in I,
where the meson was treated as a classical point
charge and where the electron wavefunction was
approximated with a function of the type specified
by Eq.(2.15), it was shown that the distortion para-
meter a can be calculated to within an accuracy of
a few percent even if the quadrupole interaction is
ignored. Since G is really only a generalization of
the function g, used in the semiclassical calculation
described in I, it seems likely that a similar
approximation can be made here. Therefore, in
order to shorten what would otherwise be an extre-
mely lengthy calculation, it is assumed that, in the
three-parameter variational computation, the Hamil-
tonian H, may be approximated by
& 4

Hy~—v2 —K—Al/lvg —”—‘t +H, + Hy, (4.6)
where both H, and H,; are multipole interactions
of the type specified by Eq.(2.8). It is probable
that the principal source of error in the calculation
is not the approximation given by (4. 6), but the
inadequacy of the function G as an accurate repre-
sentation of the relative distortion of the electron
wavefunction.

The derivation of the approximate expression for
the variational energyis straightforward. Because of
its considerable length, this expression is not re-
produced here. It is found, for both I’ = + 1 and

! =1 —1,that an—e~ atoms withn = 18, aK-e~
atoms with #n =< 32, and ape- atoms with n = 42 all
have values of Z for the circular orbits which
differ by 1% from the corresponding values deter-
mined in I using the undistorted variational wave-
function ¥}. It then follows from Eq.(4.5) that,

in each of these instances, the mean meson orbital
radii associated with the distorted and the undis-
torted variational wavefunctions differ by $1%.
Although it is quite possible that a calculation using
more accurate wavefunctions would result in some-
what larger estimates of the difference between the
two radii, the differences obtained here are so
small that there appears to be little reason to pur-
sue the matter further.
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An incident plane wave is scattered from a surface, corrugated in one dimension, and given by an infinite
number of periodic, finite-depth, infinitesimally thin parallel plates (thin comb) having soft boundary con-
ditions. The solutions of the Helmholtz equation are assumed to be upgoing plane waves above the plates
and standing waves in the plate wells. Both have unknown amplitude coefficients. Continuity of the solu-
tions and their derivatives across the common boundary yields a doubly infinite set of linear equations
for the unknown amplitudes. The equations are solved using the modified residue calculus technique due
to Mittra. The amplitudes are expressed as values or residues of a certain meromorphic function. The
residue calculus and Wiener—Hopf techniques are related; thus, an example of a solvable finite-range
Wiener~Hopf-type problem is presented. Numerical evaluations of reflection coefficients are pre-
sented as a function of frequency, depth, and incident angle. The Wood P anomaly and the Brewster-
angle anomaly are demonstrated. Results for backscatter at near-grazing incidence are also presented,
and correspondences between the reflection coefficients and amplitude phases, as a function of depth,

are indicated.

1. INTRODUCTION

The problem considered in this paper is the cal-
culation of the scattered field when a plane wave

is incident on a (one-dimensional) periodic corru-
gated surface. The surface is given by an infinite
number of periodically spaced, infinitesimally

thin parallel plates having a finite depth (thin
comb). The surface is thus a grating of thin
spikes. The geometry is illustrated in Fig. 1. Both
plates and bottom are assumed to satisfy the soft
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FIG.1. Plane wave at angle 6, incident on an infinite number of
periodic (period 21}, finite depth (d), thin parallel plates extend-
ing to +© in ¥, 8, are the scattering angles and S(x) the sur-
face. ¢ is the phase lag for a ray reaching x = 2/ as opposed to
x = 0. Region A is 2 = 0,and region B,0 = z = — d.

boundary condition. Problems of this type are
treated in the books of Weinstein! and Beckmann
and Spizzichino.2 Hurd3 gave an approximate
solution to a similar problem with a hard boundary.
He used residue calculus methods from complex
function theory to solve a set of linear equations
which yielded an approximate solution to the prob-
lem. The residue calculus method is related to the
Wiener—Hopf method.4 Stewart and Gallaway® and
Hessel and Oliner® described the types of anoma-
lies which arise when treating such surfaces, and

Tseng? pointed out an additional anomaly by dis-
cussing the problem using a scattering matrix
technique and calculating the dispersion curves
which arise. In this paper we wish to solve the
problem exactly using a modification of the resi-
due calculus technique due to Mittra, Lee, and
Vanblaricum.$

In Sec. 2 the basic formulation of the problem is
presented. A single frequency is considered. The
harmonic time dependence is separated from the
two-dimensional wave equation, and the resulting
Helmholtz equation for the wavefunction or velo-
city potential ¥(x, z) is solved in two regions:
region A above the plates 2 = 0, and region B
between the plates 0 = z = —d. i in region A is
assumed to be the sum of the incident wave and
the scattered wave, the latter given by a super-
position of plane waves with unknown amplitudes
and propagating in directions given by the grating
equation. Y in region B is assumed to be a super-
position of standing waves (with unknown ampli-
tudes) in both x and z directions. The soft
boundary condition is used. The two solutions and
their derivatives are matched across the common
domain to yield two infinite sets of equations for
the amplitudes.

The equations are solved in Sec. 3. The residue
series of certain integrals of a constructed mero-
morphic function f(w) are shown to reproduce the
infinite sets of equations. The amplitude co-
efficients in region A are particular residues of
Jf(w) and the coefficients in region B particular
values of f(w).

The details of constructing f(w) are given in Sec.
4. If the plates were semi-infinite in depth, as in
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gated surface. The surface is given by an infinite
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thin parallel plates having a finite depth (thin
comb). The surface is thus a grating of thin
spikes. The geometry is illustrated in Fig. 1. Both
plates and bottom are assumed to satisfy the soft
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boundary condition. Problems of this type are
treated in the books of Weinstein! and Beckmann
and Spizzichino.2 Hurd3 gave an approximate
solution to a similar problem with a hard boundary.
He used residue calculus methods from complex
function theory to solve a set of linear equations
which yielded an approximate solution to the prob-
lem. The residue calculus method is related to the
Wiener—Hopf method.4 Stewart and Gallaway® and
Hessel and Oliner® described the types of anoma-
lies which arise when treating such surfaces, and

Tseng? pointed out an additional anomaly by dis-
cussing the problem using a scattering matrix
technique and calculating the dispersion curves
which arise. In this paper we wish to solve the
problem exactly using a modification of the resi-
due calculus technique due to Mittra, Lee, and
Vanblaricum.$

In Sec. 2 the basic formulation of the problem is
presented. A single frequency is considered. The
harmonic time dependence is separated from the
two-dimensional wave equation, and the resulting
Helmholtz equation for the wavefunction or velo-
city potential ¥(x, z) is solved in two regions:
region A above the plates 2 = 0, and region B
between the plates 0 = z = —d. i in region A is
assumed to be the sum of the incident wave and
the scattered wave, the latter given by a super-
position of plane waves with unknown amplitudes
and propagating in directions given by the grating
equation. Y in region B is assumed to be a super-
position of standing waves (with unknown ampli-
tudes) in both x and z directions. The soft
boundary condition is used. The two solutions and
their derivatives are matched across the common
domain to yield two infinite sets of equations for
the amplitudes.

The equations are solved in Sec. 3. The residue
series of certain integrals of a constructed mero-
morphic function f(w) are shown to reproduce the
infinite sets of equations. The amplitude co-
efficients in region A are particular residues of
Jf(w) and the coefficients in region B particular
values of f(w).

The details of constructing f(w) are given in Sec.
4. If the plates were semi-infinite in depth, as in
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the Carlson~Heins problem,9,10 the meromorphic
functions to be constructed would depend on the

z component of the normalized wavenumber ¢, in
region B. Hence the various amplitude coefficients
would also. Here, for finite-depth plates, f (w) has
zeros at values g, which are shifted from the q;-
The shift is calculated by an iteration procedure
outlined in Sec. 4A. The edge condition is shown to
hold in Sec. 4B and the intensity relation is derived
in Sec. 4C. Since the surface is lossless, the latter
yields an explicit expression for the reflection co-
efficient which is used as a check in the calcula-
tions. Finally, the amplitude coefficients in region
A are explicitly evaluated in Sec. 4D.

The numerical results are presented in Sec. 5.
Reflection coefficients for the various spectral
orders are given as a function of incident fre-
quency, incident angle, and depth of the corrugations,
The Wood P anomaly and the Brewster-angle
anomaly are demonstrated, and results for back
scatter at near-grazing incidence are presented.
A maximum occurs in the backscatter reflection
coefficient when the angle of reflection is the
negative of incident angle. Correspondences be-
tween the reflection coefficients and amplitude
phases, as a function of depth, are also indicated.

Summary and conclusions are presented in Sec. 6.

There are two appendices. Appendix A is con-
cerned with some properties of the infinite pro-
ducts in the paper, and Appendix B, with the alge-
braic part of the behavior of the residue functions
for large arguments.

2. BASIC FORMALISM

The problem is to solve the two-dimensional
Helmholtz equation for a plane wave incident at
angle 6, on an infinite number of periodic (period
21), infinitesimally thin parallel plates, of finite
depth d, and with soft boundaries illustrated in

Fig. 1. The Helmholtz equation is (e-i«* is assumed
throughout)

(

where Y is the scalar wave function or velocity
potential.11 The incident wavenumber is k = 2n/x,
where A is the wavelength. The surface is given
by (see Fig.1)

02

Py (2.1)

92 | 12 —
+5';2'+k>¢(x,2)—0’

d, x=0,42[,+4l- "

S(")=%o, Xx=0,+2L 44l 2.2)
and the soft boundary condition by
¥[x, Sx)] = 0. (2.3)

Y has the following restrictions:

(a) y and Vy¢ are finite in each subregion except
at the sharp edges of the plates where ¥ = O(r1/2)
and |V ¥ | = O(r-172) as the edge is approached

JOHN A, DESANTO

(» is the radial distance from the edge). This is
the usual edge condition.12

(b) ¢ and V¢ are continuous in each subregion
and across the z = 0 interface.

(c) Apart from the incident wave, Y represents
outgoing waves as z = ©,

It will be shown that the following wave functions
satisfy restrictions (a) and (c) and Eq. (2. 3) in
regions A and B, respectively. For z = 0 (region
A) ¢ is written

tl/A(x, Z) = ll/i(x, 2) + wsc(x’ Z), (2- 4)
with y; the incident plane wave (a, = siné,, S, =
cos¥;)

Y, (x, 2) = eiMagr=,2) (2. 5)
and ¥, . the scattered wave, written as a super-
position of plane waves propagating in the positive
z direction:

o0
ll/sc(x’ z) = mZ_;@Aneik(anx«‘Bn z)’ (2- 6)

where o, = sinf,, 8, = cosf,,and 6, is the
scattering angle given by the grating equation
below. The A, coefficients are to be determined.
The scattering coefficient R(x, z) is defined by

R(x, 2) = Y, (&, 2)/¥ (x, 2). 2.7
Since the surface is periodic, so is R:

R{x + 21,z) = R(x, 2). (2. 8)
This implies the grating equation

a, =0y +nA, (2.9)

where A = /2] is the normalized wavelength.
For 0 = z = — d (region B), ¢ is written as a
series of standing waves in both x and z direc-
tions. It is given, for 0 = x < 2/, by

g, 2) = f’zsz sin(p k%) sinlg bz + d)],  (2.10)
Z

with ( pj)z + (q ].)2 = 1 and where the boundary con-

dition [Eq. (2. 3)] has been satisfied at x = 0 and

z =— d. To satisfy Eq. (2. 3) at x = 2 requires

p; to be given by
p; =jr/2. (2.11)

Now, ¥ /¥; has period 2I. Thus for other values

of x, ¥, is given by

(e~ t#oox i, (x, z))xzx1+2 m = € koY (g, 2),  (2.12)

where 0 < x,; = 2[. Substituting Egs. (2. 4) and

(2. 10) into the contimuity conditions (b) given by

Y,(x, 0) = Y5lx, 0), (2.13)
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II/A 'WB

dz (x9 O) =_87(x, 0), (2’ 14)
and projecting out the B. coefficients by the usual
procedure yields the set’ of equations

ﬂ:Z_)oo (4, +0,)K,. = 5B, sin(qkd), (2.15)
S 1
2 B,(4,—6,)K,; =5-4,B, coslgkd),  (2.16)

n==co

where 6, is the Kronecker 6:
5 = 1, n=20
=10, n=0

and the coefficients K ; are given by

21 )
K, =—21—lf0 sin(pjkx)e‘k“n"dx

= (A/2m)p (B2 — q2)71[1 — (~)e2mia/A ], (2.17)
At this point Hurd3 makes an approx1mat10n which
consists in neglecting the terms e°%*? which
occur in the right-hand sides of Eqgs. (2. 15) and
(2.16). The approximation is not necessary, how-
ever, and we do not make it. Multiplying Eq.
(2.15) by ¢ ; and successively adding and sub-
tracting thé result from Eq. (2. 16) yields the set
of equations

]BJ izq kd

E [(B, £ a4,

n=-

— (B, F 4,)8,,)K,; =
(2.18)

Multiplying Eq. (2. 18) by e’ '%*%, respectively,
successively adding and subtracting the resulting
equations, and using Eq. (2. 17) yields, after re-
arranging, the set of equations

qjkd e iqjkd e"iq]-kd e iqj kd
A — %
2 <ﬁ 4 Bn““b‘) (30“1:' Bo—4;
f(21rq]/zAp )B [1 )_7 szao//\]

Equations (2. 19) will be solved in the next section.

(2.19)

3. SOLUTION OF THE EQUATIONS

The solution of Egs. (2. 19) is given in this section.
Consider the meromorphic function f (w) specified
by the following properties:

(a) f(w) has simple poles at w = 8,,n =0, 1,
t+ 2,+-+ and a simple pole at w =— BO

(b) f(w) has simple zeros at w =4;, j = 1,2,
These zeros will be determined from the con-
dition

e*' 5" q,) = 0. (3.1)

(¢) f(w) approaches zero as |w|— .

(d) The wavefunction ¥ approaches zero as »1/2
as the edge of a plate is approached (» is the
radial distance from the edge). Equivalently,

9y /or approaches infinity as »~1/2 as v — 0.12 It
will also be demonstrated how properties (b)-(d)
are interrelated.

Consider integrals of the form

217( kdf)_‘w)dwie kdf

w+4q

M‘L“’.) 3.2)

B, ©®

PG54
o9

% *Bos By

otq;

FIG. 2. Contour of integration C, for the residue calculus tech-
nique. A possible configuration of the poles Bllnl< s) and

— By, and points + ¢.(j = s) is shown. (8, poles for n negative
are not indicated.)

where the contours C_ enclose the points w = £ ¢,
forj = s,— By, and B, for |n|< s as illustrated in
Fig. 2. As s approaches infinity, the contour C
approaches an infinite contour and Eq. (3. 2)
approaches zero because of property (c) above.
Using the Cauchy residpe theorem, the residue
series of Egs. (3. 2) are given by

EﬂM(jéiﬁM>

n==o0 Bn + qj

-ﬂﬁww@tawﬁemn
g:kd e kd

.7
+ - %% —— %+q)_o 3.9

where #(B) is the residue of f(w) at w = 8. Using
Eq.(3.1),Eq. (3. 3) becomes

Em(’?www

i B, T4,

‘iqjkd eiqjkd

={ “’kf(q)
0

(3.4)
Equation (3. 4) is equivalent to Eq. (2. 19) if the
following identifications are made:

r{— Bo) =1, (3.5)
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An = Y(Bn)’

B; = [1 — (Y™ Mape 9% (¢ ) /riq,.

(3.6)

Thus, knowing the function f(w) determines the
amplitude coefficients A and B; from Egs. (3. 6)
and (3. 7), respectively. The function f(w) is con-
structed in the next section.

4. CONSTRUCTION OF f(w)

The function f(w) is defined by properties (a)-(d)
in Sec. 3. It is constructed as follows. Define the
following infinite products [which are discussed in
Appendix A in Egs. (A10), (A9), and (A8), respec-
tively]:

=~ 0 W 274\ a2u/ija
il = =2 (2
(w; q) El < ﬂ}) C]A> e ’
< w Bn wlinA
I (w, B) = n1;11<1 _B:><i—_n ) e ’

= w B-n wlinA
nate = i (1=2) ()

Equation (A10) is used to satisfy property (b).
Equations (A8) and (A9) are used to satisfy (a).
Thus f(w), satisfying properties (a) and (b), can be
written

glw) _Mw,q)

(4.1)
w2 — ﬁ(z) le(w, B)

flw) =

where I1,(w, B) = I,(w, B)I,(w, B) and g(w) is an
entire function which will be determined. Asymp-
totic properties of these infinite products yield as
lw| = o [arg(w) = 7/2] (see Appendix A)

Fw) ~ [g(w)/w3r2]e2emdlin 4.2)

where some constant terms have been absorbed
in g(w). The domain arg(w) = 7/2 can be included
as discussed in Appendix A and does not change
the following choice of g (w) given by

glw) =(gg + glw)eziw(].nZ)/A’

(4.3)
where g, and g, are constants to be determined.
This choice of g(w) guarantees that f (w) = 0
algebraically as |w| — ©. Thus property (c) is
satisfied. It will be shown that if g, = 0, awA/ar =
O(r-3/2) as the edge of a plate is approached (7 is
the radial distance from an edge). This type of
behavior is too singular.12 Thus the edge property
(d) implies g, = 0. Similarly for g, = 0 it will be
shown that 3y, /37 = O(r~1/2), the correct edge
behavior. Using Eqs. (4. 1) and (4. 3), the above
discussion, and evaluating the constant g, using
Eq. (3. 5) yields for f(w)
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_ 260 le(_' :8()7 ﬁ)
H) = o (e p)

- Mw,q) 2im2Xwrsy/a
—(—L——-5 e .
x I Bo,q

A, Edge Condition

In order to check that property (d) hold, it will be
shown that, as the edge of a plate is approached
(i.e., as the radius » from the x = z = 0 plate edge
approaches zero), the scattered part of the term
oy, /or (proportional, e.g., to the velocity on the
plate) goes to infinity like »~1/2, Proving this
derivative condition is simpler than showing that
¥, approaches zero like 71/2 and choosing the
solution in region A is more straightforward than
working with the solution in region B for this
particular problem. Both the function and the
derivative relations are equivalent, however. The
scattered part of the wavefunction is given by Eq.
(2.6):

(4. 4)

0 3
ll/sc(x; z) = E AneZk(anx+ﬂnZ)’

n=-c0

(2. 8Y

In terms of cylindrical coordinates v and 0 given
by

x=vsinf =ra, 2z =1vcosf=7rp
Eq. (2.6) can be written as

© X .
Wsc(?’, 0) - Z; Anetkr(ocna Bnﬂ).

n=—-o0

4. 5)

Differentiating Eq. (4. 5) with respect to 7 yields

Wse

iRy (o ot BnB)
ar '

(r,0) =ik % A, (a,a + 8, Bl

(4. 6)
Consider part of this sum defined by

S ikr(ce, ot B, B
Sy(r,8)= 25 A (a,a + B, Ble" " % n ). (4.7T)
n=1

For large n,ia, ~ 8, = iO(n),and A, = O(n—3/2)
(see Appendix B). Thus the sum S, is, up to some
bounded function, equal to the sum defined by

o0
El(lr) = E n—l/ZQiKTn’

n=1

(4.8)

where K is complex with positive imaginary part.
The sum Z, can be bounded above and below as

]:on‘l/zeim"dn =Z,(0n = fown'l/zeiK'”dn. (4.9)

The integral on the right-hand side of Eq. (4.9) is
an elementary integrall3
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fooon'llzeiKmdn = (n/iKv)1/2, (4. 10)

The integral on the left-hand side of Eq. (4. 9) can
be written as

o0 : (e} N
fl n-1/2¢" " gy — fo n1/2¢"% " gy

1 R
— [ nmi2e . (4.11)

The first integral on the right-hand side of Eq.
(4. 11) is just Eq. (4. 10). The second integral can
be written by expanding the exponential in powers
of » (which is small):

1 i 1
fo n~1/2¢"™ gy — fo n=1/2{1 + iKyn + -+ }dn
1 1
= fo n=1/2dn + iKrfo ni/f2dn + - .-

=2 +iKr@) +---

-2 as 7r~— 0. (4.12)
Combining these results it is obvious that as

r = 0, 2,(r) = O(r~1/2), Similarly, another part of
the sum in Eq. (4. 6), S,(7, 6), running from # = — ®
to — 1 can be defined and shown to go like »-1/2

as v — 0. Therefore, since the n = 0 term in Eq.
(4. 6) is bounded, the sum Eq. (4. 6) can be written

as v — 0 as

ag/:C(r, 8) = ik{S,(r, 8) + S,(r, 0)} + B(r, 6), (4.13)

where B(r, 0) is some bounded function, and hence
it is obvious that 8y, (7, 6)/9r = O(r-1/2) as

¥ — 0. Since the incident plane wave and its radial
derivative are bounded, it has thus also been
shown, using Eq. (2. 4) that 3y ,(7, 8)/87 = O(r-1/2)
as¥ = 0. Thus, property (d) is fulfilled. It can
easily be seen that if g; = 0 in Sec. 4, then

aY,/3r = O(r=3/2) as » - 0. The latter behavior is
also singular.

B. Flux Conservation

In order to derive a relation which expresses the
conservation of flux, consider the following integral
relation:

$ duy *x,2)3,w(x, z) = 0, (4.14)
which follows from Green's theorem and the fact
that ¢ and y* are solutions of the Helmholtz
equation. 8, is the derivative in the direction of
the inward normal (n) to the closed contour of
integration C = 12 - -+ 81 (see Fig. 3). The arc-
length is u, the * is complex conjugation, and the
notation 3 is defined by ¥*3y = y*(a¥) — (d¢y*W.
The integrals along paths 45 and 67 vanish since
Yy is zero on these paths. Integrals along the
semicircles 34 and 78 vanish as € —» 0. This
follows from the edge condition (d). The integrals

z
202) ¢ M2Lzp

3(0,¢€)

8(2L,¢
4(0,-€) X

7(2L-€)
5(0,-Z,) 6(21,-Z,)

FIG. 3. Contour of integration C = 12 ... 81 for the flux con-
servation relation in Sec.4B. The {(x, z) coordinates of the
points are shown, as well as the inward normal »,

along the paths 23 and 81 cancel each other
because of the periodicity of y,. Substituting y;
from Eq. (2.10) and performing the integral along
the path 56 shows that this integral also vanishes.
Thus Eq. (4. 14) becomes

21 .
fo Ayt (%, 21)0,0,(x, 2,) = 0, (4.15)
Substituting ¥, from Egs. (2. 4)-(2. 6) and per-
forming the integrals yields the flux conservation
result or, since the surface is lossless, the re-
flection coefficient R:

R= D(8,/80)14,12 =1, (4.16)

where the sum is over all # such that 8, is real,
i.e.,over real scattering orders. This result is

used in Sec. 5 to provide a check on the accuridcy
of the evaluation of A,. In addition the individual
spectral reflection coefficients R, defined by

R, = (B,/By) 1A, |2 (4.17)

are plotted as a function of various parameters.

C. Zero Shifting

In order to calculate the ¢ ; it is convenient to
define the shift § ; as the difference between q ; and
q;

6, =4,—4;. (4.18)

The procedure to calculate the 6; terms is due to

Mittra, Lee, and Vanblaricum.8 In order to satisfy
the edge condition we have chosen (see Appendix
A) that for large j, q; ~ 4jA/2 ~ 4;. Thus for
large j

5.~ 0.

; (4.19)

(For general j, the 6; terms are found from Eq.
3.1):
fla)— e~ q) =o. 3.1)

Substituting Eq. (4. 4) into Eq. (3. 1) and rearrang-
ing terms yields

H(qj,(i) 24 - I, ,(q;, B
— — e2ig(kd-21n2)/A 124> .
H(_ q]" Q5 n12(_ q]-, 35 (4. 20)

Using Egs. (A10) and (4. 18) the lhs of Eq. (4. 20) can
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be written

ﬁ n + 9p — qz‘ e-4iqj/nA_
=1\8, +4q, +4q;

Factoring the product in Eq. (4. 21), substituting the
result into Eq. (4. 20), and rearranging terms yields

5(m+1)

< . { e—4iqj/jA>
m+1)

5; + qu

(4. 21)

. (m+1)
13, +q,—4q; e-4iqj/n

X

(m)
8, +q,+4q; A
=rhs ] <7—T——————"m Z ’) ety (4.22)
n=j \§," +4q,— q;

where rhs stands for the right-hand side of Eq.
(4.20). Superscripts have been added to the 6,
terms to indicate that Eq. (4. 22) is to be used as
an iterative equation to calculate the §, terms.
The procedure is as follows:

(i) For large j, 6;~ 0 from Eq. (4.19). This is
assumed to be the zeroth interation (m = 0) and is
substituted in the rhs of Eq. (4. 22).

@

(ii) The first iterations 67,657, --- , 55" are
af @

then calculated up to a j =J such that 6,5, 6.5,

+ ,are zero to any desired accuracy. In practice
we set this accuracy at € = 3 X 1074, so that 6{ ,

* 6§1) are greater than € and 55?1, «++ less
than €. The terms 6‘(,131, -++ were then set equal to
zero throughout the successive iterations.

(iii) The first iterations are then substituted into
the rhs of Eq. (4. 22) and second iterations are
calculated. Iterations are continued until the Nth
iteration yields max; |6].(N D 5W] < ¢, where
the maximum value is over all j such that §; is
in the iteration set.

(iv) In practice, once the iteration set of 6.'s was
found, successive iterations were calculated as
either (a) a forward iteration, viz. first calcuate

6§2), then 652) using 552), etc., such that the calcula-

tion of 632) used the second iterations 6§2), ey,

532—:)1 and similarly for higher interations, or (b) a

backward iteration, where we first calculate 57,

then 65‘?1 using 532), etc., such that the calculation

of 6{2) used the second iterations Gf), e, 6;2)
and similarly for higher iterations.

The backward iteration generally converged
faster. The advantages of this scheme are that
good starting values are known for all 6, and
asymptotic values are known exactly. Also, matrix
inversion is avoided, and each iteration is checked
to see how well it satisfies Eq. (3. 1). Generally,
the iterations converged rapidly (less than 12
iterations). Some examples of § ; and R are shown
in Table I

JOHN A. DESANTO

TABLE 1. Some representative values of 6 calculated using
Sec. 4C for three different sets of paramete’rs a, = sin(e,),

A = /21, and kd. The calculated total reflection coefficient R
and the number of iterations, N, necessary to satisfy the error
criterion, are also shown.

Parameters j Re(G;N) ) Im(ﬁjw) )
0y =0.8 1 — 0.0686 — 0. 0632
A =0.95 2 —0.3361 0.0373
(a) kd =3.2 3 — 0. 0001 0. 0004
R = 1.0000
N =5
o = 0.707 1 — 0.0100 —0.0172
A =0.63 2 - 0.0625 0. 0010
(b) kd =3.2 3 - 0.3625 0.0788
R =1.0001
N =86
0y, =0.1 1 — 0.0432 —0.3183
A =0.51 2 0. 0268 — 0.0232
(¢) kd =2.0 3 0. 0569 — 0. 1520
R =1.0001 4 0.0575 0. 0795
N =17 5 0. 0043 0. 0033
6 0. 0003 0. 0004
7 0. 0002 0. 0002

D. Calculation Of A

In order to calculate the coefficient A, from Eq.
(3. 6) it is necessary to know the residue of f(w) at
w = B,. To find this we first need to calculate

%, C:io%))

This can be done as follows. Using the fact that
(see Appendix A)

I{w)I{(—w) = nﬁ:l(l _ ;1‘*’2_2) - Si;lgrw)’

it is straightforward to derive from Eqgs. (A8) and
(A9):

(4.23)

sin{n{a, + (1 — w2)1/2])/A}
mlog + (1 — w2)1/2]/A

n12(w, B)n]_z(_ w,B) =

N sin{n{agy — (1 — w2)1/2]/A}
1(ag —(1 — w2)1/2]/A °
Solving Eq. (4. 24) for II, 5(w, B), substituting the

result into Eq. (4. 23) and performing the resulting
calculation yields

i"i) _ 70, (@ — a5 f,, H)
m,(w,B) AB, sin(2ray/A) :

(4. 24)

lim
@ =By
(4. 25)

A further useful relation which can be derived
from Eq. (4. 24) is

sin(2map/A)
(2ra /A0, 580, B)
Substituting Egs. (4. 25) and (4. 26) into Egs. (3. 6)
and (4, 4) yields
_ = Bo, Iy 5(—8,,p) TB,, 7)
" B,ag  Th5(8,8) TH— By, q)
2i(85+8,) n2)/ A

(4.26)

nlz("‘ Bos ﬁ) =

A

X e (4.27)
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This result is used to calculate R, from Eq. (4.17).
The results are presented in the next section.

5. RESULTS AND DISCUSSION

There are two steps in the calculation of the re-
flection coefficients R,. The first is to find the

0, shifts by the procedure outlined in Sec. 4C. The
second is to substitute these 6, terms into Eq.

(4. 27) and to evaluate numerically the A, coef-
ficients. The latter requires a note on how to
evaluate the infinite products. First, take the sum
of the logarithms of the terms in the product. The
first hundred terms (n= 1, -+, 100) are added, and
the tail of the product or remainder p is approxi-
mated by an integral. If the real and imaginary
parts of p satisfy the (box) norm [lpll = | Rep |

+ | Imp | < 0,2, then p is added to the product .,
1f not, then the next hundred terms are taken, etc,,
either until the norm is less than 0.2 or until a
thousand terms are taken. If, for n = 1000, the
norm is still greater than 0. 2, it is just added into
the sum, [Note that for the product I, , we must
take 200 terms and multiply symmetrically since
only in this way does the product converge (see
Appendix A).] The error thus introduced into each
product is of the order of ||lpll/n, which for n= 100
is less than 0. 2%. The error in the amplitude is
thus less than 1%. This evaluation in each case
was checked by calculating R from Eq. (4.16). A
few worst cases of R differed from R = 1 in the
third decimal place. The majority of cases were
one to an accuracy of four or five decimal places.
(See Table 1.)

The results are presented in Figs. 4-13, In Figs.
4-6, the spectral reflection coefficients R and am-
plitude phases ¢, (in radians, —7 tg 7) defined by
A,=|A, | "% = (R,B,/B,) /2 e "n are plotted
with respect to the parameter kd for incident
angles 9, = 5. 8° (ay = 0.1, Fig. 4), 8, = 45°(a,

= 0.707, Fig. 5) and 6, = 85° (ay = 0.99619, Fig.

6). In each case A= 0.63. Note that the changing
parameter kd can be thought of as either variable

10
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o
T T T T T T 1T T T

FIG. 4. (a) Reflection coefficients R_ and (b) amplitude phases
¢,,plotted as a function of the “depth” parameter kd with ay =
0.1 (incident angle 0, ~ 5. 8°) and A = 0.63.
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FIG. 5.

(a) Reflection coefficients R_and (b) amplitude phases
¢,,plotted as a function of the “depth” parameter kd with oy =
0.707 (incident angle 6; = 45°) and A = 0.63.

frequency, fixed depth or fixed frequency, variable
depth. The reflection coefficients shown add up to
1. Also at kd = 0, ¢y = — 7, as is to be expected for
a soft surface. It is also found that the minima of
the reflection coefficients R, are correlated with
the zeros of 32¢,/d(kd)?, and the magnitude of R,,
at its minima is correlated with the magnitude of
9¢,/2(kd). (A discussion of these assertions will
be presented in a future paper.) Some examples
are the points #d = 4.9 in Fig. 4, kd = 3,2, 4. 8,and
11 in Fig.5,and kd = 9 in Fig. 6. The vanishing of
Ry in Fig.5(a) is an example of the Brewster-angle
anomaly5-7 where for certain parameter values the
specular scattering is extinguished and all the
energy goes into the other scattering orders.

10
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FIG.6. (a) Reflection coefficients R, and (b) amplitude phases
¢,, plotted as a function of the “depth” parameter kd with o =
0.99619 (incident angle 9, = 85°) and A = 0. 63.

Figure 7(a) is an example of the Wood P anomaly5-7
i.e., the rapid exchange of energy between specular
and backscatter orders as one of the parameters

is varied. Again note, in Fig. 7(b), the above-men-
tioned correspondence between R, and ¢,. Also

the large jump in ¢_; at &d ~ 4.7 in Fig. 7(b) cor-
responds to the zero in R_, (and its slope) at the
same point,
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FIG.7. (a) Reflection coefficients R,, and (b) amplitude phases
¢,,plotted vs kd for ag = 0.707 (6, = 45°) and A = 1,20, The
two spectral orders exhibit the Wood P anomaly.

Figures 8-11 present the variations in the re-
flection coefficients R, and phases ¢, as a function
of the incident angle 9 where o, = sind ;. Figure
8 presents results for' A = 0.63 and kd = 2.0. Note
that for oy = 0,R; = R_, and the field is sym-
metrical. At those places where a new spectral
order either enters or leaves the set of scattering
orders, an anomaly occurs in the behavior of the

ol 02 03 04 05 06 07 08 0% 10

r A=063
kd=20

_‘r_ao ol 02 03 05 —06—07_ 08 08

FIG.8. (a) Reflection coefficients R, and (b) phases ¢,, plotted
as a function of @, the sine of the 1nc1dent angle (6,) for A =
0.63 and kd = 2, Cusps in the amplitudes are due to Rayleigh
anomalies.
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FIG.9. Reflection coefficients R plotted vs oy = sin6,, where
6, = incident angle. The parameters A = 1 and kd = 9 give
very slowly varying R .
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remaining spectral orders and is called a Ray-
leigh anomaly.5~ 7 It is illustrated most strongly
by the cusp behavior in R,. Figure 9, with A= 1
and kd = 9, is presented as an exa.mple of a slowly
varying reflection coefficient behavior over the
full range of incident angles. In Fig. 10(a) just the
opposite is true, and the Wood P anomaly is illus-
trated as occurring when o, varies. Again the
field symmetry for a, = 0 is obvious. Figure 11
shows backscatter re?lection coefficients at near-
grazing incidence (80° = ¢, = 89°) for two values
of A: A= 0,99235 and A = 0. 49618, and three
values of kd. Note that as kd increases, so do the
reflection coefficients. The maxima of the re-
flection coefficients occur when 6, = —#,, i.e.,
when the backscatter angle is just the negative of
the incident angle.

Figures 12 and 13 present values of R, and ¢, as
a function of A, Only the three principal scattering
orders are plotted in Fig. 12 for values @, = 0.1
and 29 = 2. The cusp in Ry at A= 0.9 is due to
the extinction of the » = 1 spectral order,and is a
Rayleigh anomaly. Bumps on other parts of the
R, curves are due to other Rayleigh anomalies
whose spectral orders are not shown. The phase

G
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FIG.10 (a) Reflection coefficients R_, and (b} amplitude phases
¢,,plotted versus aq = siné, for A = 0 95 and kd = 3. 2. The
Wood P anomaly is 1llustrated in (a).
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FIG. 11. Backscatter reflection coefficients R_plotted vs
incident (grazing) angle 6, for (a) A = 0.99235 and (b) A =
0.49618 and kd = 1. 5, 2. 5, and 3. 5. The maximum in each R,
occurs when the scattering angle 8, = — 6, for the given values
of A.



SCATTERING FROM A PERIODIC CORRUGATED STRUCTURE 1921

08

or

06
£ 05

04

Q3

0.2

[+2)

1
o7} 02 03 04 O5 06 O7 08 09 o] Ll
A

l.(b’ ap=010

Pis kd=2.0
s - %o
s
= A Ol 02 03 04 5 06 07 08 09 10 [}
+ -t

-2 4,
-3 ry

FIG.12. (a) Three principle reflection coefficients R,,, and (b)
amplitude phases ¢,,plotted vs A = A/2l for ay = 0.1 and &d =
2. There is a Rayleigh anomaly at A = 0.9 and several Rayleigh
anomalies (for small A) whose spectral orders are not shown.
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FIG.13. (a) Reflection coefficients R,, and (b) amplitude

phases ¢, ,plotted vs A = A/2I for o, = 0.707 (6, = 45°) and

kd = 3.2. A sharp Rayleigh anomaly is illustrated by the vanigh-
ing of R_3 at A = 0.57. There is anomalous behavior in the
phases at this point also.

behavior in Fig, 12(b) is very stable, Figure 13(a)
shows a much sharper Rayleigh anomaly at A

0. 57, caused by the vanishing of R_,. At this value
of A, the phase behavior in Fig. 13(b) also shows
some anomalous behavior,

6. SUMMARY AND CONCLUSIONS

It has been shown how to solve for the scattered
field when a plane wave is incident on a one-
dimensional corrugated surface of infinitesimally
thin, periodic, finite-depth parallel plates. The
soft boundary condition was used. The solution
was given via complex function theory and a rapidly
convergent iterative procedure. Matrix inversion
was avoided. Numerical evaluations of reflection
coefficients R, and amplitude phases ¢, were
given for various values of the parameters of the
problem, a,, A, and kd. In particular the Rayleigh

anomaly, Wood P anomaly, and Brewster-angle
anomaly were each illustrated. Also pointed out
was a correspondence between R minima

and zeros of 32¢,/3(kd)2 and one between the mag-
nitude of R, at its minima and the magnitude of

3¢ ,/0(kd).

Since we have only been interested in the field in
region A we have not evaluated the B ; coefficients,
although they could easily be done.

A similar problem with the surface having a hard
boundary will be presented in a future publication.
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APPENDIX A: PROPERTIES OF INFINITE
PRODUCTS

Weierstrass's definition of the gamma function
I'(w), where w is a complex variable given by'3

WWW1=mWﬁ@+%5W, (A1)

n=1

where v is the Euler~Mascheroni constant, The
factor on the right-hand side of Eq.(Al) is an in-
finite product and shows that I'(w) has simple
poles at w =—~1,—2, ... , Define the infinite pro~
duct I(w) which vanishes at the positive integers
by

mm:ﬁ@—ﬂkm. (A2)

n=1 n

The exponential factor guarantees the absolute and
uniform convergence of the product.15 I{w) is
obviously related to the gamma function via

{w) = —e?/wl'(—w). (A3)
It is necessary to construct asymptotic properties
of infinite products which have the form I(w/iA),
where A is a real positive quantity, To do this it
is necessary to consider asymptotic properties of
I(iw/A) which are given by Stirling's approxima-
tion.15 Using this approximation there results as
[w]— o arg (w) = 7/2:

T {w/ia) ~ e™A(a/2mw)y2e-1(e/a)y + lau-laa-1emi/2)

(A4)
and as |w|— © for arg (w) = 1/2,
I(w/ia) ~ ™% sin(rw/ia)e ™ P(a/2nw)Y2
x g~ WAy *Inw-Ina-l+n/2) | (A5)

Equation (A5) follows by noting that

(w/iA)l(—w/iA) = (iAfwr) sin(wn/iA)
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and expanding Il(—w/7A) using Stirling's approxi-
mation which is now valid for —7/2 < arg (w)
< 37/2,and, in particular, for arg(w) = 7/2.

The procedure used in this paper for constructing
infinite products with nonintegral zeros is illus-
trated by the following example: Let the infinite
product have zeros at the points D, for m = 1,2,

3, ... It will thus contain terms like (1—w/D, ).

If, for large m,D,, ~ imA, where A is real and posi-
tive, the (1 — w/D,) term is to be multiplied by

(D /imA) exp{w/iAm). The final infinite product is
defined by

Ti(w, D) = ”iz (1~ w/D,)(D,,/ima)e ™, (AB)

The exponential guarantees that the product is
both absolutely and uniformly convergent,13 pro-
vided the product ID,, /iAm) is. The latter pro-
duct is included for convenience with regard to
asymptotic properties as seen below.

To find the behavior of Eq. (A6) for large w, divide
Eq. (A6) term by term by a modified form of Eq,
(A2) given by II{w/{A). For large w,the result is
unity. That is, for large w, there results

I{w,D) ~ I{w/ia) (AT)

and the asymptotic value of II{w, D) is thus known
from Eq. (A4).

Specific infinite products used in this paper are
given by

e w Bn wlinA
=T1{1-2)( 2
,(, ) nljl( Bn)(m)e

for the product with zeros at w =8, (n=1,2,.-+),

- A v _&_ whijn) A
o) = i~ ) )

(A8)

(7)) .
=1 (1 - —) <B;") i (A9)
nsl B,/ \inA
for the product with zeros at w = g8, (n = —1,
—2,++-)and
(w,7) = ﬁ( ~ ﬁ) (_211:1 gt (A10)
ml q,,/ \im
for the product with zeros at w =g, (m =1,2,.--).

Following the above discussion, note that the pro-
ducts TI(8.,/inM)do not converge because of the a,
term in g,,. However, the products II; and Hz
always occur together, and IL II, converges since
(8,6, /M A2)does. Also in Eq.{A10) we have
specified that for large m, g, ~ imA/2 ~ ¢, .

For large w, following Eq. (A6), we have.

Hl(w; ﬁ) ~ Hz(w’ ﬁ) ~ n(w/lA);
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(w, g) ~ N(2w/iA);
and hence, using Eq. (A4) as |w |~ «©,arg (w) # 7/2

(@, B) ~ Hy(w@, B) ~ ™A A/270)V2

X e(w/iA)(7'1+ﬂi/2‘1m\+1nu)’ (A11)
T{w, §) ~ e"”'/"‘(A/41rw)1/2
% @@uin) (-1#7i/2 -1n(A/2M100w) (A12)

Asymptotic expansions for arg(w) = 7/2 can be
found in a manner similar to the discussion follow-
ing Eq. (A5).

APPENDIX B: ASYMPTOTIC ALGEBRAIC
BEHAVIOR OF THE RESIDUE FUNCTION

In Sec. 4A following Eq. (4. 7), it was stated that the
asymptotic behavior of A (for n large) is n=3/2,
where A, is given by Eq. (3. 6). This can be illus-
trated as follows. From Eqs. (A2) and (A4) it is
possible to write, for large w,

{(w)} 1 = O(wl’2), (B1)

where exponential factors have been neglected
since only the algebraic behavior is of interest.
The question we wish to answer is, what is the
algebraic behavior of the residue R(m) defined by

R(m) = Lim {w — m)/N(w)}, (B2)

where m is a large positive integer? It is possible
to write

{l@)} 1 = gy I w). (B3)
This has the effect of exposing the poles of
{n(w)}-1 through the sin(mw) factor. Hence
R(m) = mall(— m)u}}gln {(w — m)/sin(mw)}

= m(=)"{ m). (B4)

For m positive and large the asymptotic eX}) -
sion of II{(~ m) has algebraic behavior m~1/2,
This follows from Eq. (A3) and Stirling's approxi~
mation to the gamma function. Thus from Eq.
(B4)

R(m) = O(m1/2),

which is the same algebraic behavior as {If{w)} 1.
Hence the residue of the function has the same
asymptotic algebraic behavior as the function.
Thus, for example, generalizing this result, 4 ,
given by Eq. (3. 6), behaves like n~3/2 for large n
because r(8,) ~ f(B,) ~ n~3/2 for large n.
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I. INTRODUCTION

The static multiple density correlation functions

In(kl’ e ’kn) - <pk1 e pk,.) (1)

play an important role in the study of many-
particle systems. The notation { ) denotes the
expectation value for a quantum mechanical system
or the canonical ensemble average for a classical
system; p, is the density fluctuation, In the theory
of quantum liquids,! for example, I,'s are the over-
lapping matrix elements of the phonon states. A
detailed knowledge of these integrals would then
permit the construction of a complete set of ortho-
normal states. In the configurational space we have

N

pk = E exp(Zk .ri)a

i=1

(@)

where r; is the coordinate of the ith particle and

N the total number of particles. The evaluation of
I, then requires a knowledge of the n-particle dis-
tribution function g,. In order to have a reasonable
estimate of these matrix elements, one usually
uses the Kirkwood superposition approximation?

or the convolution approximation3,4 for g,. It is
quite difficult, however, to assess the accuracy of
these estimates. Furthermore, the algebra in-
volved in these evaluations is quite tedious. For
example, one has to consider explicitly whether
there exist partial momentum conservations among
the k's. Besides a few special cases that have
been considered,5~9 no general expression is
known for I,,.

In this paper we shall consider this general pro-
blem. We first derive in Sec.II a general expres-
sion for I,. From this expression and the assumed
cluster property of the distribution functions, we
are able to see that I, breaks into product of lower
ones if there exist partial momentum conserva-~
tions among the k's. Consequently, some of the
results previously obtained using the super-
position approximation are seen to be exact. This
general discussion also permits us to assess the
accuracy of the estimation obtained by using the
convolution approximation. In Sec. III we use the
convolution approximation to evaluate [,. A closed
expression is obtained and is shown to be accurate
in the small % region. Some applications of our
result are given in Sec. IV,

II. GENERAL FORMULATION

The quantity of inferest is I, defined by Eq. (1).
Explicitly we write

1,0, k) = QZ—Vlf WPk, * Pk,i'dr1 e dry,

®)
where
Qy = [ Wydry - dry
and W, is symmetric in the particle coordinates
{r;, +++,ry and is given by

Wy = expl— V{ry, "+, Ty)/kT| (42)

for a classical system,
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I. INTRODUCTION

The static multiple density correlation functions

In(kl’ e ’kn) - <pk1 e pk,.) (1)

play an important role in the study of many-
particle systems. The notation { ) denotes the
expectation value for a quantum mechanical system
or the canonical ensemble average for a classical
system; p, is the density fluctuation, In the theory
of quantum liquids,! for example, I,'s are the over-
lapping matrix elements of the phonon states. A
detailed knowledge of these integrals would then
permit the construction of a complete set of ortho-
normal states. In the configurational space we have

N

pk = E exp(Zk .ri)a

i=1

(@)

where r; is the coordinate of the ith particle and

N the total number of particles. The evaluation of
I, then requires a knowledge of the n-particle dis-
tribution function g,. In order to have a reasonable
estimate of these matrix elements, one usually
uses the Kirkwood superposition approximation?

or the convolution approximation3,4 for g,. It is
quite difficult, however, to assess the accuracy of
these estimates. Furthermore, the algebra in-
volved in these evaluations is quite tedious. For
example, one has to consider explicitly whether
there exist partial momentum conservations among
the k's. Besides a few special cases that have
been considered,5~9 no general expression is
known for I,,.

In this paper we shall consider this general pro-
blem. We first derive in Sec.II a general expres-
sion for I,. From this expression and the assumed
cluster property of the distribution functions, we
are able to see that I, breaks into product of lower
ones if there exist partial momentum conserva-~
tions among the k's. Consequently, some of the
results previously obtained using the super-
position approximation are seen to be exact. This
general discussion also permits us to assess the
accuracy of the estimation obtained by using the
convolution approximation. In Sec. III we use the
convolution approximation to evaluate [,. A closed
expression is obtained and is shown to be accurate
in the small % region. Some applications of our
result are given in Sec. IV,

II. GENERAL FORMULATION

The quantity of inferest is I, defined by Eq. (1).
Explicitly we write

1,0, k) = QZ—Vlf WPk, * Pk,i'dr1 e dry,

®)
where
Qy = [ Wydry - dry
and W, is symmetric in the particle coordinates
{r;, +++,ry and is given by

Wy = expl— V{ry, "+, Ty)/kT| (42)

for a classical system,
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Wy = W/(rly cee,Ty) 2 (4b)

for a quantum mechanical system,

Here V is the total potential energy and ¢ is the
wavefunction describing the system.

Let us define as in Ref. 4 the n-particle distribu-
tion function

N! -1 -
8,(ry, 0 1y) =mQN tp7n

X fWNdrn,‘.1 ceedry, (5)

where p is the particle number density. An imme-
diate consequence of this definition is the sequen-
tial relation

pfgn'fl(rl’ e ’rn+1)drn+1= W - n)gn(r11 "ty ).
(6)

The following cluster condition is also expected
to hold for an infinite homogeneous and isotropic
system such as a liquid:

r}nlglo gn(rlr tee ’rn) zgn-l(rl’ tee ’rn—l)’

(M

i=1,2,-+0,n—1.

We shall assume (7) in later discussions.

It is convenient to define at this point the cluster
functions f, as follows:

g1(ry) = f1lr) =1,
83(r1,Ty) = f1(r1)fa(ry) + fo(ry,T5),
g3(r1, Ty, r3) = fl(rl)f1(r2)f1(r3) + f]_(rl)fz(rz, r3)
+ fl(rz)fz(r3, rl) + f1(r3)f2(r1, rz)
+ f3(ry,r5,T3), (8)
etc.

The structure of Eq. (8) is identical to that of the
Ursell-Mayer expansion in classical statistical
mechanics,10 We shall use the compact notation

(8")

to denote the structural relation (8) between any
two sets of functions g, and f,.

g=oaof or f=oa"1lg

The function £, is symmetric in its » coordinates.
The cluster condition (7) implies the following
condition on f:

(9)

li.Lnoofn”l""’Tn):O’ 1=i<j=n.

Ti]

Namely, f, is significant only when the n particles
are clustered together, Also it is easy to estab-
lish by induction that the sequential relation (6)
implies the condition

pffnalry, (10)

* rn+1)drn+1 = - nfn(rly tee ,rn)-

Y. WU

We shall also need the Fourier transforms of the
£ and f functions:

o k,) = p”fg,,(rl, ceo,Ty) expli(k, °ry
dr,

n

Gk, -
+ o 4+ k,or,)dr,. .-
(11)

F(ky, -+, k,) = p"[fy(ry,---,1,) explilky °r,
+ .o+ k,or)dr, --. dr

ne

With these definitions we now proceed to evaluate
I,. Substituting Eq. (2) into Eq. (3) and making use
of the definition Eq. (11), one readily obtains the
following:

Il(kl) = G1(k1),
Iz(kl,kz) = Gl(kl + kz) + Gz(kl,kz),

I3(ky,Kp,kg) = Gy (ky + Ky + k) + Golky, ky +Ky)
+ Gylkg, kg + k,) + Gylks, ky + k,)
+ G3(ky, kg, k3), (12)

etc.,

LKy, »0,Kk,)

= 25G, (all distinct partitions of the k’s).

A typical term of Eq. (12), e.g., G,(k; +kj, Kk,

+k, + kg, -+ ), comes from the contribution in

Eq.(3) whenr, =r,, ry; =T, =5, etc., where

{ is the number of distinct r's. We shall use the
compact notation

I1=8G or G=p8"11 (127)
to denote the structural relation (12) between any

two sets of functions I, and G,,.

It is clear from the definitions (11), (8), and (8')
that

G = oF. (13)
Hence, from (12’),

I = BaF. (14)
We now make use of the identity

Ba = ap, (15)

which can be proved by observing that every term
in Ba F is in af F and vice versa. We then arrive
at

I =aU, (16)
where
U = gF. (1

Equation (16) is our main result, Note that the de-
rivation of Eq. (16) involves only the definitions of
the g, f, G, and F functions and is therefore exact.
The cluster condition of Eq. (7) has not been used
in these discussions.
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We now discuss properties of the U functions de-
fined by (17) as implied by the sequential and the
cluster properties (6) and (7). It is easy to see
from Egs. (10) and (11) that
Fn+1(k1,"°1kn,0)Z_nFn(kly"',k)~ (18)
As a consequence of Eq. (18), one can establish
the relation
U,(ky,---,k,)=0 ifanyk, =0, (19)
Equation (19) is, of course,a consequence of the
sequential relation Eq. (6) and is therefore exact.
For example, Egs. (17) and (19) recover the iden-
tity
(20)

In+1(k1, . -,kn,0)=NIn(k1,°",kn),

which is implied by the definition (3).

The cluster condition (9) has the important conse-
quence that F, defined by Eq.(11) is of the order
of N. Furthermore, from the translational invari-
ance of f, we see that F, vanishes unlessk; + ---
+ k, = 0, Since each U function is a linear com-
bination of single F functions, we conclude that

U,(&y,+-,k,) = 5k1+...+kn,00(N), (21)
In particular
U, (k) = &, oN. (22)

It follows then that the leading contribution in J,
[Eq.(16)] comes from the terms containing the
most number of nonvanishing momentum-conserv-
ing 6 functions. That is, the leading contribution
can be broken into product of lower I,,'s if there
exist partial momentum conservations among the
k's (the degenerate case). The degeneracy factor
can be easily counted. For example,

(WA Py )" = T, (U, —k )T [L+ O],
(23)

This result was first derived by Jackson and
Feenberg5,7 in an elaborate analysis using the
generalized Kirkwood superposition approxima-
tion for g,. Since only g, enters in the expression
of U,, we see that, to the lead order in N, Egq.(23)
is exact. Indeed, an alternate derivationl! of Eq,
(23) using the generating function technique does
not involve the use of higher distribution functions.
The exact result is generated by the superposition
approximation because the latter satisfies the
cluster condition (7). Another example of applica-
tion of Eq.(16) is the evaluation of the following
matrix element8 which enters in the theory of dis-
persion of phonons in liquid He#4:

I50k,1,—k—
x [1+ow-1),kllk+1{k=0.

1,h,— h) = U, 1,— k — 1)U, (h,— h)
(24)

1925

This integral was first evaluated by Lai, Sim, and

Woo?8 using convolution approximations to g;,£4,

and g5. It is now clear that only g4 and g, enter on

the right-hand side of Eq. (24) consistent to a re-

cent remark by Feenberg.? Finally we remark

that if le,“ .+k_.o 18 the only nonvanishing momen-

-

tum-conserving factor, then

I"(kl"",kn)=Un(k1;"‘ k )- (16,)

yn

OI. EVALUATION OF U,
APPROXIMATION

In this section we evaluate the U functions defined
by Eq. (17) using the convolution form g, for g,,.
If we define

BY THE CONVOLUTION

fo) = a—lg(c) (25)

and let F, () be the Fourier transform [Eq.(11)] of

7, %), our goal is then to compute
ule) = BF(C)- (26)

First, we remark that since g (¢ satisfies the se-

quential relation exactly, U,,(c shall satisfy Eq.
(19). In fact, our result, Eq. (34’), yields precisely

UL o kiky -k, for small k's and n = 3. (27)

In the ensuing discussions it is again convenient
USe is quite accurate, at least in the small
regions, Any correction would be of higher than
the zth power in &'s.

In the ensuring discussions it is again convenient
to introduce a diagrammatic notation for algebraic
expressions, Readers are referred to the basic
conventions and definitions given in Sec.III of Ref.
4, The principal definitions and a few new addi-
tionsl2 are now reviewed.

A graph is a collection of points with lines joining
certain pairs of points. A root (or root point) is a
point with a numeral label and is represented by
an open circle. Unlabeled points are represented
by solid, or black, circles. An n-vooted graph has
precisely n root points, labeled from 1 to»n, A
node is a point having three or more incident lines.
These lines intersect at the node point. A terminal
point has only one line incident. The line incident
to a terminal point will be called a terminal line.
A Cayley tvee is a connected graph containing no
cycles, i.e., one cannot return to a point onh a Cay-
ley tree by following a sequence of lines,

To obtain the mathematical expression represen-
ted by a graph, one simply writes for each black
point a factor pfdrk, where % is taken to be the
label of this black point, and for each line connect-
ing two points labeled i and j writes a factor
fo(lr;—r;l). Any isolated root point has a factor
1. With these conventions, the convolution form
for g, is4
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g¢Nry, -+, r,) = the collection of all distinct n-
rooted graphs consisting of connected and dis-
connected Cayley trees provided that each

black point is a node. (28)

A moment's reflection using (25) and (28) now
yields

fXr,, -+, r,) = the collection of all distinct con-
nected n-rooted Cayley trees provided that
each black point is a node. (29)

It is now possible to evaluate the Fourier trans-
form F( of ), Since every term in f{¢ is a Cay-
ley tree, the result is quite simple and can be ex-
pressed in terms of the Fourier transform of f, =

gz."l’

u(l) = S(k)—1 = p fekT[gy(r)— 1}dr.  (30)
In fact, every term in F{(k,,---,k,) can also be
conveniently represented by a graph related to

the graph of f{¢). The following further graph de-
finitions will be useful.

A norwmal graph is one in which all roots are ter-
minal points. Thus Fig. 1(b) is a normal graph
while Fig. 1(a) is not. We speak of the following
process which converts a graph into a normal one
as the normalization of a graph. The normaliza-
tion process is simply to remove the label of any
nonterminal root point, thus leaving a black point,
add a new root point with this label, and connect it
to the black point by a dofted line, In this way the
graph of Fig. 1(a) is normalized into that of Fig.
1(b). We see that a normalized graph will now
have two kinds of lines, the solid and the dotted
ones, The dotted lines are always terminal lines.

| 2 ) 2

{b)

(a)
FIG. 1. Normalization of a graph [graph (a) is normalized into
graph (b)].

Consider a given graph G in f{), We leave it for
the readers to verify that the Fourier transform
[Eq.(11)] of this graph can be obtained by the fol-
lowing rules:

1. Normalize G if it contains nonterminal
root points.

2. In the normalized graph label the termi-
nal line (solid or dotted) connected to the ith root
with momentum k , .

3. If all lines incident to a node are labeled
except one, then label this remaining line with a
momentum equal to the sum of all the previously
labeled momenta surrounding this node.

4. Repeat 3 until all lines are labeled.

Y. WU

5. For each solid line labeled by k write a
factor u(#). For each dofted line write a factor 1.

6. The Fourier transform of G is the pro-
duct of all factors in 5 and the factor Nﬁkf- .. +k,.0.

2

(b)

FIG. 2. Fourier transforms of two terms of fs(C).

We remark that the momentum labelings are
unique because the graphs are all Cayley trees
and because the total momentum is conserved.
Two examples are given in Fig. 2. The graphs on
the left are two typical terms of /(%) while the
graphs on the right are their Fourier transforms.
Explicitly Fig. 2 says the following:

(@) pd ff15f53f23f34 explifk, T+ tkyor)]

X dry-.-drs = Nuyty,sUotydiigiatats

(b) p8f f1ofz6Sa6 faslas €XP[El r + - +kgory)

X dry «-sdrg = NujtyyoligtarsUs0iiiararss
where we have adopted the shorthand notations
Upeg = u(lky +kyl)

ul = u(kl),

(31)

0142 = Ok;*kp0,  €tc.

Thus we arrive at

E${)k,,+--,k,) = the collection of all graphs of

f£© subject to the rules 1-6. (32)
F{) for n=1,2,3,4 are given explicitly in Fig. 3,
where only the topologically distinct graphs are
shown and the momentum labels have been
deleted.

It is seen from Fig. 3 that in the expression of
F{°) there exist pairs of graphs which are identical
except that in one graph a given terminal line is
solid while in the other the same terminal line is
dotted. We may then combine these two graphs
into a single one so that this terminal line is
doubled (solid and dotted lines). The weight of this
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/\

C\\
+f_‘\

FIG. 3.

Diagrammatic representations of Fff) for n=1,2,3,4.

double line is now u(k) + 1 = S(k). However, we
cannot do this simultaneously for two or more
terminal lines intersecting at one node because
according to our rules of normalization no graph
has intersecting dotted lines. This problem is re-
solved when we substitute Eq, (32) into Eq. (26) to
compute U{?), From the definition (12) or (12') we
see that in some graphs of U{®) the terminal lines
have momenta which are the sums of individual
k,'s. These graphs can be converted to have inter-
sécting dotted lines and give rise to precisely
those graphs we need. First a dotted terminal line
having a momentum Zk; can be split into several
terminal lines, each having a label k;. For a solid
terminal line having a momentum >k;, one simply
adds new terminal points and connects all these
new points to the original terminal point by dotted
lines. Three examples of such conversion for
graphs U} are shown in Fig. 4. Consider

Uff)(kpkz,kykcx) =..r +Fy(ky,k, + kg + k)
et By Ky kg + Ky)

The graph of Fy(ky,ky + kg + ky) = Nuydyipiz44 18
the one on the left in Fig, 4(a). By the above pro-
cess this graph is converted to the one on the
right in Fig. 4(a). The latter now has four root
points with single momentum labels. Similarly,
Fig. 4(b) denotes the same conversion for the term
Nutgttss 1424304 in FSRy, Ky, Ky + k), etc. Note
that this process results in the same algebraic ex-
pression because of rule 3 above.

After converting all graphs of US® in Eq. (26) ac-
cording to this rule, we see that

USk,, .+, k,) = the collection of all distinct
normal n-rooted Cayley trees provided that
each black point is a node. The terminal
lines can be either solid or dotted, each con-
sidered as distinct. (33)

Of course, rules 2-6 must be used in Eq. (33). The

1927

7
LY
kgthy ks ki) ks
ke
)
P
/K,
(b) Ks +Ka\ -
b ?
/ Kotk 1k
K 2+k; 2
(c) ‘ — ull — -0
k k ks

FIG. 4. Reduction of three graphs in U ff) to single momentum

labels for the terminal lines

identity between Egs. (33) and (26) can be estab-
lished by observing that every graph in Eq. (26) is
in Eq.(33) and vice versa.

It is now possible to combine the solid and dotted
lines of all the terminal lines at the same time to
form double lines. Thus we arrive at our final
result:

Uk, -+ -, k,) = the collection of all distinct nor-
mal n-rooted Cayley trees provided that each
black point is a node. All terminal lines are

double (solid and dotted) lines. (34)

Graphs for U{®) are shown in Fig.5for n=1,2,3,
4,5, where all momentum labels are deleted and

U = |
[_j2 = Oo===0
ulo N
3 4 \\
© N
P N
N,
{C) 4
= A
Us + = +

FIG. 5. Diagrammatic representations of U(”) forn=1,2,3,4,5.
The double lines have weights S(&) while the single lines have
weights u(k) (see text).



1928 F.

only the topologically distinct graphs are shown,
Again rules 2-6 must be used in Eq. (34) with the
following addition to rule 5:

For each double terminal line with a label k
write a factor S(&).

Explicitly, Eq, (34) reads

Up(ky,ky) = NOy4pS;,

USNRy, +++,K,) = NbjupieaurgSy +#- S, (1 +A4)), 34
>
withl3
A, =0,
Ay =tyyp t tUyyg + gy, (347)
A= 75 st D0 Uil
1gicigs 0 igii<rs LI TR

A, and A5 can be read off from Fig. 5. In general,
A, is some linear combination of products of the
u's and can be represented by the diagrams in (34)
with the terminal lines stripped. We note the fac-
tor S, .-+ S, in UL for n = 3. Since in a liquid

S (&) o« & for small &, 1,14 we arrive at Eq. (27), the
result quoted earlier.

IV. ORTHONORMAL BASIS

One possible application of our resuit is the con-
struction of orthonormal bases in the quantum
theory of liquid He4, Jackson and Feenberg5 first
considered this problem in the paired phonon
space. We now briefly outline their result (with
somewhat simplified analysis) and indicate the
direction of possible extensions.

Consider the normalized + k phonon states

i+s 1

Vs = Cys 4,0, P,  for fixed integrals,  (35)

where {, is the ground state wavefunction and the
normalization constant C,, = [NS(k)]” ¢*25/2x

[(1 + 2s)!]7%2 can be determined from Eq. (23).
We wish to construct the orthonormal set |p) de-
fined by the linear transformation

b
|p) = Z()) apllP[+5,Z) (36)

where for brevity the dependences of |p) on s and
a,, have been deleted.

A convenient set of equations to work with is3

al,ﬁllp}“s'}) - th,
Via Eq.(35) for Y. ,, Eq.(37) becomes

h =< p. (37)

L (I+h+ s)! _
I:EO Ui [T T s) 1 (Zh + s)TJV2 = Owr B =0-(38)

Y. WU

To solve Eq. (38), we define

20+ s)1(2p + s)1]V2
appap,=LL (l)+(sﬁp1 3! o

(39)

and multiply Eq. (38) by the factor [(2k + s)!]/2/
k!, The result is the equation

é})(”:”)a,:%, h<p. (40)
Comparing Eq. (40) with the identityl5

B () =, n=p
we find

o = 0" (?); (42)
hence

w0 @) T @

This completes the construction of the orthonor-
mal set |p) in the paired phonon space.

One direction of possible extensions is to construct
an orthonormal basis using the z-phonon states
W = Coliloe - e )™ (44)
where k; + --- +k, = 0. One can indeed carry

out a similar analysis for finding the orthonormal
basis '

m=0,1,2,...,

? (&)
|17> = ZZ:I;) apﬂpln . (45)
The resulting equation to solve turns out to be
» -1
5 (h + z)" @, =86, h=p, (46)
1o\ h
where

o< (]

Unfortunately, we have been unable to find the
solution of this equation for » = 3. However, since
our result shows that the two and higher phonon
states are essentially independent in computing
the matrix elements, it would be possible to in-
clude only a few y4¢) for small values of 7 and =.
This would then constitute an extension of the case
n= 3 and m = 0,1 considered by Davison and
Feenberg.16
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The study of singularities in general relativity was given a strong impetus by a topological approach due
to Penrose and others, and powerful theorems concerning their existence have been developed. In par-
ticular a theorem by Penrose states that under certain conditions the existence of a trapped surface in

a space~time guarantees that singularities will develop. Using the spin coefficient formalism we genera-
lize from the Schwarzschild solution and prove the existence of a wide class of solutions possessing such
trapped surfaces by displaying the solutions to terms linear in a certain null coordinate. Then,using an
asymptotic procedure, the method is generalized to include a class of solutions possessing “asymptotical-

ly trapped surfaces.”

1. INTRODUCTION

In 1965 Penrose presented a remarkable theorem
on the existence space-time singularities which
must follow from the existence of a trapped sur-
face (a trapped surface being a compact spacelike
2-surface suchthat both sets of null rays orthogonal
to the surface have negative divergence at every
point of the surface).! From this theorem great
interest in trapped surfaces has developed. The
theorem requires the existence of a global Cauchy
hypersurface (GCH). A GCH in a space~time M is
a three-dimensional submanifold S in M such that
any timelike curve in M without endpoint has one
and only one point in common with S. The notion

of a GCH is related to the Laplacian idea of deter-
minism (that the entire future of the universe can
be completely determined by knowing the positions
and velocities of all particles in the universe at
one time, i.e., on one three-dimensional spacelike
submanifold) by the fact that the Laplacian idea of
determinism requires the existence of a GCH, That
is, if a GCH does not exist in M, then for any three-
dimensional spacelike submanifold I that we choose
as our “initial” hypersurface (“present” state of
the universe) we will be able to find an event A to
the future of I through which there pass nonspace-
like, i.e., either timelike or null, curves which have

no event in common with 7. In this situation we

see that, loosely speaking, such nonspacelike curves
can transmit information to A without that informa-
tion having ever registered on I. Thus, in order to
maintain the “classical” notion of determinism we
must assume the existence of a GCH. The conclu-
sions in Secs.4 and 5 assume the existence of a
GCH in the space-times discussed.

Previous to the Penrose theorem it was believed
by many (for example, see Lifshitz and Khalatni-
kov2) that the necessary collapse to a singularity
of spherically symmetric matter within the
Schwarzschild radius was simply due to the high
symmetry involved, The Penrose theorem, with its
lack of symmetry assumptions, denies this simple
explanation and, in the consideration of space-time
singularities, shifts attention away from the sym-
metry properties of the situation, focusing in-
stead on the existence of trapped surfaces for

7 < 2M, The Penrose theorem says that this,
rather than the symmetry, is the crucial factor
guaranteeing the eventual singularity at » = 0 for
collapsing matter. The Schwarzschild solution pre-
sents us with a situation from which to generalize
and thereby show the existence of a general class
of solutions exhibiting such trapped surfaces and
the attendant singularities,
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1. INTRODUCTION

In 1965 Penrose presented a remarkable theorem
on the existence space-time singularities which
must follow from the existence of a trapped sur-
face (a trapped surface being a compact spacelike
2-surface suchthat both sets of null rays orthogonal
to the surface have negative divergence at every
point of the surface).! From this theorem great
interest in trapped surfaces has developed. The
theorem requires the existence of a global Cauchy
hypersurface (GCH). A GCH in a space~time M is
a three-dimensional submanifold S in M such that
any timelike curve in M without endpoint has one
and only one point in common with S. The notion

of a GCH is related to the Laplacian idea of deter-
minism (that the entire future of the universe can
be completely determined by knowing the positions
and velocities of all particles in the universe at
one time, i.e., on one three-dimensional spacelike
submanifold) by the fact that the Laplacian idea of
determinism requires the existence of a GCH, That
is, if a GCH does not exist in M, then for any three-
dimensional spacelike submanifold I that we choose
as our “initial” hypersurface (“present” state of
the universe) we will be able to find an event A to
the future of I through which there pass nonspace-
like, i.e., either timelike or null, curves which have

no event in common with 7. In this situation we

see that, loosely speaking, such nonspacelike curves
can transmit information to A without that informa-
tion having ever registered on I. Thus, in order to
maintain the “classical” notion of determinism we
must assume the existence of a GCH. The conclu-
sions in Secs.4 and 5 assume the existence of a
GCH in the space-times discussed.

Previous to the Penrose theorem it was believed
by many (for example, see Lifshitz and Khalatni-
kov2) that the necessary collapse to a singularity
of spherically symmetric matter within the
Schwarzschild radius was simply due to the high
symmetry involved, The Penrose theorem, with its
lack of symmetry assumptions, denies this simple
explanation and, in the consideration of space-time
singularities, shifts attention away from the sym-
metry properties of the situation, focusing in-
stead on the existence of trapped surfaces for

7 < 2M, The Penrose theorem says that this,
rather than the symmetry, is the crucial factor
guaranteeing the eventual singularity at » = 0 for
collapsing matter. The Schwarzschild solution pre-
sents us with a situation from which to generalize
and thereby show the existence of a general class
of solutions exhibiting such trapped surfaces and
the attendant singularities,
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We proceed by discussing and exhibiting a new
coordinate system for the Schwarzschild solution
which is particularly well suited for describing

the trapped surfaces and for the generalization of
the Schwarzschild solution. (This new coordinate
system for the Schwarzschild line element not

only covers the entire Kruskal manifold, but yields
for the metric explicit functions of the coordinates,
in contrast to the Kruskal form which uses im-
plicit functions.)

We next show, by means of the spin-coefficient
formalism, how characteristic initial data can be
given, such that a wide class of solutions.show the
development of a trapped surface. The solutions
are determined to linear terms in a variable «,
which labels null hyper surfaces. The behavior of
two spin coefficients in the neighborhood of the
surface u = 0 then enables us to accept the exis-
tence of trapped surfaces in this neighborhood. In
general these solutions possess a radiation field
and deviate significantly from spherical symmetry.
For special data the Schwarzschild solution can be
recovered. Finally, in conclusion, we show how
these solutions can be further generalized by
suitably relaxing conditions on the # = 0 hyper-
surface and obtaining asymptotic solutions which
possess the trapped surface property,

2. SCHWARZSCHILD LINE ELEMENT

The Schwarzschild metric in retarded Eddington—

Finkelstein coordinates is given by

d.? = (1 — 2m/r)du? + 2dudr — r2(d62 + sin26d¢$2),
(2.1)

and in advanced coordinates by

ds2 = (1 — 2m/7r)dv? — 2dvdr—r2(do2 + sin26d ¢ 2).
(2.2)

In the Kruskal diagram, Fig. 1, metric (2. 1) applies
in the region AC, while metric (2. 2) applies in AB,

)
===(({l]]"
szt 8

T
T \

e A_ﬁ

FIG 1, Kruskal diagram.
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There is no reason why retarded coordinates can-
not be introduced in the AB region, though it is
usually reserved for advanced coordinates. De-
noting the new retarded light cones by # and the
affine distance on each cone by s, we see that the
coordinate transformation

n=8m2(1 — 7/2m)e” 24

s = ev/4m-r/2m,
g =9, (2.3)
¢’ =9,

with inverse

¥ = 2m — us/4m,
v=4mlogs +4m — us/2m,
9=9,
o= ¢’,
takes metric (2. 2) into the form3,4

942 zc\ 2
ds? = __?E_>du2+zduds- 2am — 1S
8m2 — s 4m

X (d62 + sin20d ¢2), (2.4)
In Fig.1,b; and b,, the Schwarzschild radius, are
given, respectively, by # = 0 and s = 0. The two
singular lines 7 = 0 are given by 8m2 — s = 0. It
is interesting to note that this coordinate system
covers the entire Kruskal region ABCD, with the
following values:

A<——>u<0,5> 0,
B<«——u>0,s>0,
C<«—>u<0,5<0,
D<«——u>0,s<0,

In the remainder of the paper we shall be con-
cerned with the neighborhood of the surface % =0
and the analogous region for more general metrics.

3. THE FORMALISM

We are interested in the solution of a characteristic
initial value problem of the empty-space Einstein
field equations. The.spin-coefficient formalism
provides a convenient method for approaching this
problem. For complete details of this formalism
the reader is referred to Newman and Penrose.’
We give a2 summary of the formalism sufficient

for our purposes here,

In a four-dimensional Riemannian space of sig-
nature — 2, a set of vectors (1,n, m,m) is chosen,
where 1 and n are null and m is formed from unit
spacelike vectors a and b by

m = 32 (a —ib),
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with the following orthonormality conditions:6

—p

o
I =mm” =1,
B Mo B = 1
lpl =nn =mm =m,n =0, (3.1)
B, =l B
l”m _l“m =n,m =mn,in 0.

A set of equations equivalent to the empty-space
field equations can be written in terms of the
tetrad vectors, the tetrad components of the Weyl

tensor C“yp o defined as
= o B,y &
Yoy = — cch)’él m l'm,
= o Byy, &
lil‘/l - C(xﬁyél nlim,
— —a B 5
Vg =— Cygpemn 1'm’, (3.2)
— —oa B,y &
w3 ==Ly 1 I'n,
—o B_7 &
Yy = — Copps ' 'n
and the spin coefficients defined as follows:”
= Hv = —U.V
K—lm,,ml, T=—n, mi,
= Tl = ol V
p_lp;umm’ “—_np;ymm,
= oV = __ Iy
AS~—n, ,mm, vE—mn, mn,
o=1 _umpmy, =1 . I-‘,n“’
_ . B p—s (3.3)
B:g(lpunm —mpwmm),
=1 (7. pHY =y v
y=z 0 —m, mn),
1 B —u v
€= 3 (lw,n U —my,ml),
a= 3} (lm”n“mu m zym”m")

Before displaying this set of equations, a some-
what specialized coordinate and tetrad system
will be introduced. One of the coordinates x0 = u
will label a family of null hypersurfaces, and the
vector 1 will be chosen to be tangent to the family
of null geodesics lying in the hypersurfaces u =
const, Another coordinate x! =sis chosenasan
affine parameter along these null geodesics. The
coordinates (x2, x3) are chosen to label the null
geodesics on each surface # = const. The tetrad
vectors n and m are required to be parallelly
propagated along 1. In this manner, some of the
coordinate and tetrad freedom is eliminated.

With the above coordinate system, the metric
tensor takes the form

v —Y =
g =" + 0l — ' —mPm”

(o 1 o o ]
gll ng g13
= 0 g2 3.4)
g’
0 g13

and tetrad vectors become

By
= ¢y, lp - 6?1’
u

n* = st + Us} + X6,
The metric can be exprkessed in t%rms of the
tetrad components w, £, U,and X~ as

gll =2(U— wG)),

gl=x* — (Ff& + Fw), (3.6)

g7 =—¢'F + EY).
We also have

k=1=€=0, p=p, T=a+p. @)

A set of equations equivaler® to the empty-space
field equations can now be written as follows:

DE = p& + oF, (3. 8a)
Dw =pw +od—(a+p), (3. 8h)
pxi=(a+B)E + (a + B)E, (3.8¢)
DU=(G+B)@+(a+Blw—(y +7), (3.8d)
Dp = p2 + 07, (3. 8e)
Do = 2p0 + Y, (3. 8f)
Dr=1p + 70 + ¢y, (3.8g)
Dg = ap + 80, (3. 8h)
DB = Bp + a0 + Yy, (3.8i)
Dy =71a + 78 + ¢y, (3. 8j)
DX = xp + B, (3. 8k)
Du= pp +ro + 3y, (3.81)
Dv=71x+ 7ut+ s, (3.8m)
0X' — At = (u+ 5 —y)E' + 1, (3.9)
8 —8t'= (B —a)'+ (@—p)E,  (3.9)

5 —dw= (B — a)w + (& — B)& + (u— R),

(3. 9¢)
U — Aw = (3. 9d)
AL —bv=2av+ (7 —3y — p— DA — Yy,
. (3.9e)
bp—80=(B+d)p+ (B —3a)o—y,, (3.9)
6o — 8B = up — A0 — 208 + QB + BB — Yy,

t7—yio+io—v,

(3.9g)
oL —0dp=(a+ P+ (@—30N —¥5 (3.9h)
ov— Au=yu—208 +gut p2 + 2, (3.9)

by —AB=Tu—0ov+ (u—y +7)B + X, (3.9))
6T— A0 =278+ (3 + u—3y)o+rp,  (3.9K)
Ap— 87 =(y +5—[p— 201 — o — Vs,
(3.91)
Aa—8y =pr—TA—AB+ (F—y — Ba— s,
(3.9m)
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where

- d k0
6 Fw— +

s : EPL

(3.10),

- 2 2 ¥ 0 0
AU —+—+ X" —5 D= —,

s ou ox 08

We will also have need of the Bianchi identities
written in this formalism;

DYy — 5W, = 4p¥; — 4ay,, (3.11a)
Dy, — 8y = 3p¥, — 20, — Y, (3.11b)
Dy, — oy, = 20% 5 — 204y, (3.11c)
DYy — oYy = pY, + 2a¥, — 3Ny, (3.11d)

Ay — 8y = (dy — Wy — (4T + 28)¢; + 3o,
(3.12a)
AYy — oY, = vy + (2y — 2u)Y; — 3Ty, + 20y,
(3.12b)
Ay, — 8¢, = 2vyY; — 3uP, +(—27 + 26)‘»”3"' oY,y
(3.12c)
AYg — o, =3vy, — (2y + 4#)% + (48— T)"I/4-
(3.124)

Equations (3. 8) and (3. 11) are termed the radial
equations., The equations containing A determine
the # behavior of the solution., (The « here and in
all that follows is to be considered as the same
type of coordinate as the Z in the previous section,)

The spin coefficients u and p provide a convenient
characterization of trapped surfaces, Given a
spacelike two-dimensional surface, S, lying in a

u = const null surface and whose tangent space (at
any point) is spanned by m and m, the vector fields
1 and n are the two null vector fields orthogonal to
the surface, Thus if both 1 and n have negative
divergence at all points on S and if S is compact,
then S is a trapped surface. With the above choice
of coordinate system and tetrad we have

= — 1 divl, (3.13a)

and?®

i+ o= divn, (3.13b)
Thus S is a trapped surface if it is compact with
£>0and 4 + u< 0 everywhere on S,

4. THE GENERALIZATION OF THE SCHWARZS-
CHILD SOLUTION

The (%, s, 6, ¢) coordinate system used in the ex~
pression of the Schwarzschild metric of Eq.(2. 4)

is a coordinate system suitable for use in the
spin—coefficient formalism. That is, # is a coordin-
ate labeling null hypersurfaces, s is an affine
parameter along null geodesics in each surface

= const, and (0, ¢) label these null geodesics, The
metric variables, Weyl tensor components, and
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spin coefficients of the Schwarzschild solution
when expressed in this coordinate system become
(here we drop the bar over the u):

A=0=v=Kk=T=nm=€=0,

p=—= 8m2s . —u
(8m2 - us)2’ us — 8m2’

. 1
4m2> 8(2m — us/4m)2’

y:-—s<4-—

V2

oY cotd =i¢
=T 7 Cm—us/am) ¢

g _V2 __ cots 0i®

4 (2m — us/4m) ’

o2 V2 (4.1)

U= 2o

8m2 — us’ 2(2m — us/4m)

V2i %
3= — =
£ = 2 sin6 (2m — us/4m)’ X'=w=0,
—m

Yy = Vo=V =¥z =9¢,=0,

(2m — us/4m)3’

As was mentioned in Sec. 2, we shall be concerned
with the properties of the solution in the vicinity of
the null surface, # = 0, and hence we consider the
expansion of the metric and other pertinent vari-
ables around « = 0, In particular we have®

1
= —— u+ 0 (u2 4.2
p=gs (u2) (4.2)
and 2
p=_—S5_ 1 s O0'(u3). (4.3)
8m2 32 m?

The two-dimensional surfaces S, defined by (x =
const, s = const, s > 0) change their character as
we cross the # = 0 surface. On the positive side of
u=0,we have p > 0 and 1 < 0, Therefore, here S
is a trapped surface. On the other hand, to the
negative side of # = 0 we have p < 0 and < 0, and
here S is not a trapped surface.

This is the situation to be generalized. We shall
solve the spin-coefficient. form of the field equa-
tions in the neighborhood of the # = 0 null surface,
subject to the condition that p = 0 at # = 0, This
solution is expressible in terms of several arbi-
trary functions (data), whose specification complete-
ly determines a particular solution, From this
solution, by a certain choice of one of the functions,
we prove the existence of a large class of solutions
exhibiting trapped surfaces. The method of solu-
tion is as follows. Equations (3. 8) and (3.11) are
integrated subject to p = 0, and thus the s behavior
of all the spin coefficients and field variables is
obtained on the initial surface # = 0. Each integra-
tion introduces a “constant of integration” [actually
a function of (x2,x3)]. Some of these constants of
integration are eliminated by judicious use of the
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coordinate and tetrad freedom.1? The nonradial
equations without A then yield relations among the
remaining constants of integration. Finally the A
derivative equations give the u behavior, allowing
us to propagate the solution off the # = 0 surface.

Also, in obtaining the solution we present, one
other assumption is made, whose complete mean-
ing is not clear, but which appears to be necessary
in order to obtain the class of solutions we wish
to discuss. It should be made clear that this
assumption is in the form of both a restriction on
solutions and a coordinate condition, i.e., some
violations of this assumption can be obtained by a
coordinate transformation, but the most general
violations cannot be so obtained (see Ref, 10). The
assumption is that the constant of integration
associated with 7, namely, 7(0, 0, x*), is zero. From
this restriction and using up all coordinate and
tetrad freedom to eliminate most arbitrary func-
tions, the procedure outlined above leads to the
solution presented in Eq. (4. 4). The solution is
written with the help of differential operators, 6
and 6,11 defined by

on =— P57 v(Py),
& =— PGP ),

where 7 is a quantity of spin weight g with Vv given
by v = 9/ex2 + i3/ ex3,and P is a real-valued
function of (x2, x3) related to the Gaussian curva-
ture on the two-surfaces u = 0, s = const [see Eq.
(4. 6)).12

In order to use these definitions in Egs. (4.4),
we assign spin weights 2, 0, 0, and — 2 respec-
tively to the quantities 10,y 9, log P, and A0.

The covariant form of the metric, accurate to first
order in u,is now given by

8oo = 29952 — {[299¥9 — 3 (B5WY)]s3 + [3(5510)

+ 3 (B8X0)]s2}u (4. 4a)

&o1 = 1, (4. 4b)

811 =812=813=0, (4.4c)
&0z = (= 1/P){z[(5¢9) + (B ]s2 + [(BXO)

+ (B10) [s}u, (4.4d)
803 = (/P)E[(5¢¥9) — (BY9)]s2 + [(BRO)

— (OA9) s }Ju, (4. 4e)
g22 =— 1/P2 — 1/P2{2y9s + (A0 + X0)

— (A0 — X0)2}y, (4. 4f)

893 = (i/pZ)()\O._.XO)u, (44g)

g33=—1/P2 — 1/P2{2y9s — (A0 + X0)

— (A0 — X0)2}y. (4. 4n)

We also have spin coefficients p and p given by

p=—yu (4. 5a)
b=¥9s + {— 209Wgs2 — AOXO + 3 (vBYY)s2
with

V9 = — 3(53 logP), (4.6)

wherel3 A0 is an arbitrary real function of (¥2,x3).

We point out here and emphasize that, from Eq.
(4.6), (— 2¢/9) is the Gaussian curvature of the
various 2-surfaces S, defined by

S, ={,s,x2,x3)lu =0, s = b, (x2,%3) in their

ranges},

which are essentially slices of the null surface

u = 0. In the Schwarzschild solution these 2-
surfaces are spheres,i.e.,compact with constant
positive Gaussian curvature. In the present case
we choose the surfaces S, to be complete surfaces
with Gaussian curvature, K, positive and bounded
away from zero (0 < k < K, where k is some
positive constant). These are free data that can
be arbitrarily specified, and these choices imply
that the S, are compact.

Note that the metric tensor, up to linear terms
u, depends on the function P(x?), which determines
the two-dimensional metric of the above slices,
and on the function A%(x?), whose physical meaning
is obscure, though it might be interpreted in terms
of the radiation running parallel to the surface

u = 0. The Weyl tensor, up to linear # terms, pos-
sesses two further functions of x*: ¥ and ¥'Q (Ref.
10); it seems reasonable to interpret them as the
radiation field parallel to the # = 0 surface and
the derivative of this radiation field.

The main results of this section can be obtained
from a study of p and u [Eqgs. (4. 5)] and from the
fact, mentioned above, that {'§ is related to the
Gaussian curvature K of the S, by ¥§ = — ; K.
Here, since w| ,_o= 0,the S, are spatial 2-sur-
faces spanned (at any pointg by m and m [see

Eq. (3.5)] and thus — 2p and 2u give (essentially)
the divergence of the two sets of null rays ortho-
gonal to the S, (see Sec.3). It is easy to show that
a coordinate transformation of the form

u' =u,

s’ =5 +f(s,x2,x3u,

xk' = xk )
can be found such that (to terms linear in u) the
vectur m is a linear combination of the natural
basis vectors of x’2 and x’3. Therefore the sur-
faces S/, defined by
Sty = {(w, s'x27, x37) lu’ = €,s" = b, (x2’,x3")in

their ranges}
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are spatial 2-surfaces spanned by m and m and
hence — 2p and 2u give the divergence of the two
sets of null rays orthogonal to the S/,. Also,
since the surfaces S/, reduce to S, at € = 0, the
compactness of S/, follows from continuity. It is
clear from Eqs. (4. 5) that a suitable choice of one
of the S/,,i.e.,a choice of € small enough, implies
that p is positive and p negative on this surface.
Thus there exist surfaces such that the conditions
discussed in Sec. 3 for the existence of trapped
surfaces are satisfied. The Penrose theorem be-
comes applicable and hence singularities must
develop in this space (assuming the existence of
a GCH, see the Introduction). We comment finally
that, with appropriate choice of data, Egs. (4. 4)
could of course represent small perturbations of
the Schwarzschild solution (which has a GCH), and
for these solutions the existence of trapped sur-
faces follows essentially from the stability of the
initial value problem in general relativity.

5. ASYMPTOTICALLY TRAPPED SURFACES

We can generalize the previous result and obtain
asymptotic results. That is, we can obtain a class
of asymptotic solutions, linearized in #, which
exhibit trapped surfaces. In Sec.4 we required
the assumption that p be zero on an initial null
hypersurface. What we do now is to relax this
condition and require instead that on an initial
null hypersurface, o approaches zero suificiently
fast as a function of the radial coordinate s. Since
we will be doing expansions around # = 0, the co-
efficients in the expansions will be functions only
of (s,x2,x3). We adopt the notation of letting a
carat over a function indicate the function evalu-
ated at ¥ = 0. In addition a superscript zero on a
function indicates that the function is independent
of s. In Ref.5 asymptotic results of the integra-
tion of the spin-coefficient form of the field equa-
tions are obtained under the assumption that

Y, = O(s~5) and1¢ Dy, = O(s~¢) along with certain
“uniform smoothness conditions” as

d‘iu‘/o = 0(8“5), e ’didjdkdltpo = O(S_s),
i’jrk’l = 2’3
diDlpO = 0(8-6), "

(5.1)
,dyd d,Dyy = 0(s76),

where

We follow this procedure, but with slightly stronger
conditions than those above imposed at an initial
null hypersurface labeled # = 0. These agsump-
tions are

J/O = ¢’8S—5 + 0(3‘6)y

Dy, =—5¢§s~6 + O(s~7)

(5.2)
(5.3)

and “smoothness conditions”
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diJ;O = (@¥Qs~5 + O(s78),- -,

44dd v, = @,4dd y)s™® + 0(s7F), (5.4)
& DYy, =—5(d;¥§s~6 + 0(s77)," -+, '

d;d,d, DYy = —5(d;dd p8)s~6 + 0(s~7).

Also, in order to obtain the class of solutions de-
sired, we shall have need of further assumptions.
The specific further assumptions will be explicitly
written when need for them arises. Here we merely
note that they are not without motivation, being
straightforward generalizations of conditions that
obtain'in the Schwarzschild solution of Eq. (2. 4)

and the solution of Egs. (4.4). We now deal with the
formal problem of obtaining the asymptotic solu-
tion.

As in the case p = 0 the first step in obtaining the
asymptotic solution is to do the s integrations on
the # = 0 surface and again each integration intro-
duces a constant of integration, an arbitrary func-
tion of (x2,x3). We then use up all coordinate

and tetrad freedom (to a certain order in #) and
make use of the nonradial equations to eliminate
most arbitrary functions.!? The u-derivative
equations then allow the propagation of the solu-
tion off the # = 0 surface, yielding the solution
linearized in #. The decisive step in the above
procedure is doing the s integrations at« = 0.
These are asymptotic integrations, and the pro-
cedure employed follows rather closely the corre-
sponding procedure in Ref.5. We indicate briefly
this procedure which leads to expressions for

p and p. An analysis of their behavior indicates
that the trapped surface property of the solution,
Eqgs. (4. 4), of the previous section can be general-
ized to an asymptotically trapped surface property.

Concerning ourselves with the asymptotic integra-
tions we note that Eqgs. (3. 8e) and (3. 8f) can be
written as

DZ =22 +Q, (5. 5)
where
p o _[o ¥
Z= [a ﬁ}, Q_[¢00]. (5.6)

In Ref. 3 it is found that if ¥, is such that

Js |¥4lds = O(1), which is certainly satisfied in
the present case, then the solution to Eq. (5. 5) is
given by
=— (DY)Y 1, (5.7
where
Y =sF +E+0(s"2), DY=F+0(s73),

with E and F constant matrices. Thus,if F is non-
singular, Z is given by

Z =— s~ + s~2EF-1 + O(s73),
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and this is the situation considered in Ref.5.15 If
F is singular, however, the situation is quite dif-
ferent. In fact if F = 0 and E is nonsingular, then
Z = O(s~3). This is the situation we now con-
sider.16

Since it is permissible to integrate the order
symbols (but not differentiate them), we can sub-
stitute the information Z = O(s~3) back into
Eq. (3. 8f), integrate, and obtain

=— 9§s~4 +0(s~9), (5.8)
with the lack of precision in the specification of
¥, preventing us from obtaining better results.
Substituting Eq. (5. 8) [and also using the infor-
mation Z = O(s~3)] into Eq. (3. 8e) and integrating,
we obtain

p=(—Yy/16:T)s7 + O(s78), (5.9
and again the initial assumption on fl}o prevents
a better estimate.

At this point the following lemma is indispensible
(see Ref.b).

Lemma. Let the complex (# X #) matrix B and
the complex column » vector b be given functions
of s, where

B=0(s"2), b=0(s"2). (5.10)
Let the (# X n) matrix A be independent of s and
have no eigenvalue with positive real part. Suppose
also that any eigenvalue of A with vanishing real
part is regular (i.e., its multiplicity is equal to
the number of linearly independent eigenvectors
corresponding to it). Then all the solutions of

Dy = (As~! + B)y + b (5.11)
are bounded as s — «, y being a complex column
vector function of s.

This lemma can be applied to the pair of equations
obtained by taking an x¢ derivative of Egs. (3. 8e)
and (3. 8f),i.e.,to
Dd,f = 2pd,p + 6d;§ + 54,5,
Dd, G = 2Gd;p + 26d,G + d;{,.

(5.12a)
(5.12b)

By the lemma, since A = 0,B = 0(s72),and b =
0(s72), we have d, .0, d,0,d, & = O(1). Substituting the
information back into Eq (5 12a), making the as-
sumption that d,f possess a limit at s = ©, and
integrating, we have Dd pds' =d,p— (4, p)
0O(s~3). Now, since (p)sg,o = 0, it can be shown
that (d;0),.. = 0, and thus
d,p = 0(s3), (5.13a)
In a similar manner, assuming that d;6 possesses
a limit at s = ©, we conclude that

d,o = O(s~3). (5.13b)

“For the purposes of the present program we need,
in fact, to assume that dd;p, d;d;0, d; d;d,p,
d;d; dko,d d; dk :0,and d 4, dkdlo all possess
limits at s = @.17 Argumg as above, we obtain

d,d;p,d,d;5, - - - d;d;d,df, d;d;dydi5 = O(s73).

(5.14)
At this point, with no further assumptions except
the additional requirement that 7(0,0,x%) = 0 (the
same remarks apply on this requirement as were
made in the case § = 0,Sec. 4), it is a fairly
straightforward procedure to apply the lemma to
the rest of the radial equations to obtain the asymp-
totic behavior of all variables at # = 0. The A
equations then immediately determine the u be-
havior off the u = 0 surface, enabling us to express
the complete asymptotic solution to terms linear
in #.10 For present purposes we need only con-
sider the expressions for p and p:

p=(YRE/T16)s-7 + O(s~8) — [y + O(s~) u,
(5.15)
p=y9s — (1/4-12(83¢Qs~2 + O(s~3)

+{— 299U 9s2 + ;B8P Ys2 — 3(5BA0)s — AOXO

+ [(1/4+12)(5585¢9) + (1/v2 *12)5@§5 ¥/9)
— (1/V26)5(y95%§) + (1/4+12) (59 (Bu/9)
— (1/4-12)(5YQ) (W PJs~1 + O(s72)ju.  (5.16)

Here A0 is a datum and ¢ §( = —35% log P) is re-
lated to the Gaussian curvature of a 2-surface

S, , Whose contravariant metrlc B (z j =2,3),is
defined as 1Y = lim __  g”(u = 0, s, x2, x3). We
denote the underlying set of points of thlS metric
space as S, —{ 0, ©, x2, x3)| (x2, x3) in their
ranges}. This is essent1a11y the slice of the u = 0
hypersurface at s = . Again, and with the same
kind of reasoning as was used in Sec. 4, we make
the assumption that S, is compact and has Gaus-
sian curvature that is positive and bounded away
from zero. As in Sec 4 we would like to conclude
that on some 2-surface in the neighborhood of u =
0,p is positive and u is negative. If this condition
obtains, i.e., both null rays converging, we can con-
clude for the existence of asymptotically trapped
surfaces. The term “asymptotically trapped sur-
faces” is used since the proof is based on an
asymptotic solution

Again one can show that it is possible to choose a
coordinate transformation of the form

u' =u, (5.17)
s" =s + fls,x2,x3)u, (5.18)
xk/=xk’ (5- 19)

such that (to terms linear in «) the vector m is a
linear combination of the natural basis vectors of
x®. Thus again the surfaces S, defined by

SebE{(u,’ sr,fo’xsr) I U =

in their ranges},

€8 =b,(x2",x3')
(5. 20)

are spanned by m and m.
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As b approaches infinity and € approaches zero
the properties of the S, approach continuously the
properties of S, which implies that there exists
a neighborhood of b = %, ¢ = 0 in which the sur-
faces S, are compact. From the definition of the
S ., this implies a neighborhood of s = « (the
asymptotic region) and # = 0 such that the S, are
compact. As in Sec. 4, p + [ and —2p give the di-
vergence of the two sets of null rays orthogonal to
the S.,. Since (—y4) is chosen to be positive and
bounded away from zero, it appears from Egs.
(5.19) and (5. 20) that, assuming we can neglect all
higher orders (in «) of (5. 19) and (5. 20), there are
points in any neighborhood of # = 0, s = @ at which
p is positive and p + @ is negative. Hence it
appears that some of the S, are trapped surfaces.

The objection to the argument is, of course, that
the higher-order terms (in ) of the expressions
for p and p will be functions of s, and it is not im-
mediately apparent that we can ignore their influ-
ence. The question needs to be explored. Fortu-
nately it is not difficult to carry out such an inves-
tigation. The s dependence of the coefficients of
these higher-order terms comes in explicitly
through explicit polynomial expressions in s or
implicitly through the order symbols. The order
symbols cause us no concern since their influence
is negligible when compared with the explicit posi-
tive powers of s that occur and, in fact, we need
only look at the highest positive power of s occur-
ring. To obtain the coefficients of these higher-
order terms one takes successive u derivatives of
Egs. (3.9i) and (3.91) and obtains expressions for
the successive u derivatives of p and p which, when
. evaluated at « = 0, are essentially the above-men-
tioned coefficients, These u derivitives of p and p
of order greater than 2 involve « derivatives of
order 2 or higher of the other variables and so
necessitate going back to Eqgs. (3. 8),(3.9), (3. 11),
and (3. 12) and taking successive u derivatives to
obtain the appropriate expressions. The whole
process proceeds forward in the recursive manner
of using the second- (and lower-) order informa-
tion in the third-derivative expressions to get
third~derivative information, then substituting this
third- (and lower-) order information into the
fourth-derivative expressions to get fourth-order
information and so forth. Since we need only look
at the highest powers of s involved, the process is
not difficult and one quickly sees the trend of
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events, It turns out that in general each successive
u derivative contains one higher power of s than
the previous u derivative. This comparison be-
tween successive u derivatives holds for all suc-
cessive pairs of u derivatives except for (zero,
first) and (first, second) pairs. Here the general
rule breaks down mainly because of the way the
coordinate and tetrad freedom was used and be-
cause of the condition 70 = 0, i.e., we were able to
eliminate some of the powers of s through the use
of coordinate and tetrad freedom (see Ref. 10) and
the condition 70 = 0 eliminated some others.
Thus, neglecting all but the highest power of s in
each coefficient,p and p have the forms

p=AgsT +Aju+Aysu + - + A,‘s"“lu”+ e,
(5.21)

B =Bys + B s2u+Bystu + - +Bs" P+ .,
(5. 22)

where A, = —¥8¥3/716,A; =—y9,B, =9 and
the rest of the A's and B's are functions only of
(x2,x3), Letting u approach zero (as s = «) as

u = a/s7, where a is an arbitrary constant, we have
p=(A, + aAy)s™7 +(terms which go to zero faster
than s77), u = Bys + (terms which go to zero faster
than s—95),

Thus by choosing a > — A;/A,, we can guarantee
that, for s sufficiently large, p > 0. Also,for s
large, 1 < 0 since B, = ¥/3 and ¥/ is negative by
choice (Gaussian curvature of S, is positive and
bounded away from zero). We conclude that there
exist S, which are (asymptotically) trapped sur-
faces.

Thus the expressions, accurate to first order in u,
of which the p and p of Egs. (5.15) and (5. 16) are
a part (Ref, 10) constitute a wide class of solutions
of the Einstein field equations that admit trapped
surfaces. We expect that in asymptotically flat
space—times this is the most general situation in
which trapped surfaces can develop.
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General expressions are developed for the evaluation of both Coulomb and hybrid electron repulsion
integrals over basis sets of arbitrary Slater-type atomic orbitals. In each case,a single numerical inte-
gration over a product of a one-center and a two-cénter charge distribution function is required for the
recovery of the integrals. The one-center charge distribution functions are shared by both integral types.
The two-center charge distributions are different for the two cases, but the constants ard special func-
tions required are the same. The results lead to an efficient computer-oriented procedure for the reso-
lution of these integrals. The charge distribution functions can be used to obtain two-center overlap,
nuclear attraction, kinetic energy, and, somewhat less efficiently, exchange integrals as well.

INTRODUCTION

The use of Slater-type atomic orbitals as a basis
for the expansion of molecular wavefunctions leads
to good descriptions of physical systems at the
expense of computational difficulties in the evalua~
tion of multicenter electron-repulsion integrals.
Among the diatomic integrals that arise,the Cou-
lomb integrals are energetically the most signi-
ficant while hybrid integrals are the most nume-
rous. Accurate and efficient methods for the eva-
luation of all diatomic integrals remain important
even in the context of many-center molecule calcu-
lations.

Recently, analytical expressions have been de-
veloped for the evaluation of Coulomb integrals.l
Since the scheme is amenable to computer usage,
programs have been developed and incorporated
into a general diatomic integral package for evalu-
ating all two-center Coulomb,! hybrid,? and ex-
change3 integrals. The latter two formulations
take advantage of the charge distribution concept,4
and considerable savings of computer time are
achieved in this way. The Coulomb formulation,?!
on the other hand, relies on rapid handling of each
integral on a one-by-one basis with very little
computational material being carried over from
one integral to the next.

The hybrid formulationZ employs one final numeri-
cal integration over simple charge distribution
functions. Application of this method to Coulomb
integrals allows a further exploitation since cer-
tain computed charge distribution quantities can

be used by both Coulomb and hybrid integrals in
common. The computational efficiencies gained

in this respect offset the introduction of a final
numerical integration for the Coulomb integrals.
The exchange formulation3 employs one final
numerical integration over a rapidly convergent
infinite series of charge distribution functions.
Application of the hybrid scheme to exchange inte-
grals is less effective since a double numerical
integration arises plus an infinite series.

In previous work, explicit expressions have been
developed for Coulomb and hybrid integrals.5~10
Charge distribution procedures involving two final
numerical integrations have appeared.1l Hybrid
and exchange integrals have been evaluated using
ellipsoidal methods, while a Fourier convolution
method has been employed for Coulomb integrals.12

In addition, general multicenter methods have
been employed for these integrals.13,14 A review
of other pertinent techniques has also appeared.l3
The present treatment for Coulomb integrals offers
advantages in that general expressions are given
for all combinations of orbitals, only one final
numerical integration is needed, charge distribu-
tion quantities can be computed and used for more
than one type of integral, and the methods are
specifically oriented to the two-center nature of
these integrals.

In the following, the derivation of formulas is
sketched and final expressions are shown. The
hybrid integral is handled first to demonstrate

the method to be used? and to establish the present
notations. The final expressions given here are
modified from those previously given? so as to

be able to utilize certain efficiencies in the unified
treatment. The Coulomb integral is next resolved
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for some function F independent of #, and for all sufficiently
small z.

10 D, Pajerski "Trapped Surfaces and the Development of Singu-
lavities,;” Ph.D.Thesis (University of Pittsburgh, 1969) (un-
published).

11 g, Newman and R, Penrose,J. Math, Phys. 7, 863 (1966).

12 In Ref. 11 the operator & is defined in terms of complex co-
ordinates, (£, £), related to (x2,x3) by £ =—x2 + ix3,{ =
—x2 — jx3, In this coordinate system the line element has
the form ds2 = ~d¢d{/P2. The definition of 5 is then &7 =
2P1-9(3/2¢) (Pn), where 7 is a quantity of spin weight q.

1937

13 Though A0 is réal, the complex-conjugate notation is used
in Egs. (4. 4) and (4. 5) in order to give the correct indication
of spin weights.

14 The meaning of the order symbol used here is that f (u, s,
x') =0 (g(s)) means | f(u, s,x") | <g{s)F (u,x") for some
function F independent of s and for all sufficiently large s.

15 In Ref. 5 this is referred to as the asymptotically spherical
case,

16 In Ref, 5 this is referred to as the asymptotically plane case

17 This circumstance we find rather surprising since in the
asymptotically spherical case,i.e.,p =—s~1 + O (s72), one
needs no assumptions beyond those on ¥, (see Ref. 5).
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General expressions are developed for the evaluation of both Coulomb and hybrid electron repulsion
integrals over basis sets of arbitrary Slater-type atomic orbitals. In each case,a single numerical inte-
gration over a product of a one-center and a two-cénter charge distribution function is required for the
recovery of the integrals. The one-center charge distribution functions are shared by both integral types.
The two-center charge distributions are different for the two cases, but the constants ard special func-
tions required are the same. The results lead to an efficient computer-oriented procedure for the reso-
lution of these integrals. The charge distribution functions can be used to obtain two-center overlap,
nuclear attraction, kinetic energy, and, somewhat less efficiently, exchange integrals as well.

INTRODUCTION

The use of Slater-type atomic orbitals as a basis
for the expansion of molecular wavefunctions leads
to good descriptions of physical systems at the
expense of computational difficulties in the evalua~
tion of multicenter electron-repulsion integrals.
Among the diatomic integrals that arise,the Cou-
lomb integrals are energetically the most signi-
ficant while hybrid integrals are the most nume-
rous. Accurate and efficient methods for the eva-
luation of all diatomic integrals remain important
even in the context of many-center molecule calcu-
lations.

Recently, analytical expressions have been de-
veloped for the evaluation of Coulomb integrals.l
Since the scheme is amenable to computer usage,
programs have been developed and incorporated
into a general diatomic integral package for evalu-
ating all two-center Coulomb,! hybrid,? and ex-
change3 integrals. The latter two formulations
take advantage of the charge distribution concept,4
and considerable savings of computer time are
achieved in this way. The Coulomb formulation,?!
on the other hand, relies on rapid handling of each
integral on a one-by-one basis with very little
computational material being carried over from
one integral to the next.

The hybrid formulationZ employs one final numeri-
cal integration over simple charge distribution
functions. Application of this method to Coulomb
integrals allows a further exploitation since cer-
tain computed charge distribution quantities can

be used by both Coulomb and hybrid integrals in
common. The computational efficiencies gained

in this respect offset the introduction of a final
numerical integration for the Coulomb integrals.
The exchange formulation3 employs one final
numerical integration over a rapidly convergent
infinite series of charge distribution functions.
Application of the hybrid scheme to exchange inte-
grals is less effective since a double numerical
integration arises plus an infinite series.

In previous work, explicit expressions have been
developed for Coulomb and hybrid integrals.5~10
Charge distribution procedures involving two final
numerical integrations have appeared.1l Hybrid
and exchange integrals have been evaluated using
ellipsoidal methods, while a Fourier convolution
method has been employed for Coulomb integrals.12

In addition, general multicenter methods have
been employed for these integrals.13,14 A review
of other pertinent techniques has also appeared.l3
The present treatment for Coulomb integrals offers
advantages in that general expressions are given
for all combinations of orbitals, only one final
numerical integration is needed, charge distribu-
tion quantities can be computed and used for more
than one type of integral, and the methods are
specifically oriented to the two-center nature of
these integrals.

In the following, the derivation of formulas is
sketched and final expressions are shown. The
hybrid integral is handled first to demonstrate

the method to be used? and to establish the present
notations. The final expressions given here are
modified from those previously given? so as to

be able to utilize certain efficiencies in the unified
treatment. The Coulomb integral is next resolved
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along the same lines. The application of this tech-
nique to exchange integrals is also considered.
Finally a discussion is presented of the various
special functions required for this analysis.

I. DEFINITIONS

For computational efficiency, the Slater-type
atomic orbital x; (P, t), situated at center P and

a function of the electron coordinates f,is defined
as follows:

Xi (P t) = Nvpf T exp(— Crp, )@, +1)-1/2

mi (eptq’pt) ’ (1)
where #,1,and m are quantum numbers, ¢ is an
orbital exponent, N is a normalization constant

N, = (8)n1/2[(21, + 1)/(2m)1]172, 2)

and Y, is a real,normalized spherical harmonic.
The previously defined!6 coordinate systems are
to be used at centers A and B, with R representing
the separation distance between them.

The hybrid H and Coulomb C integrals of interest
here are written:

H = [dv,U,@)xs(4, 2)xa(B, 2),

C = JdV,U,(2)x5(B, 2)xe(B, 2),

3)
(4)
where the one-electron potential U, has the form,
U,@) = Jav,x, (4, Vx4, )7 s (5)
Thus, both integrals involve integration over the

same one-center distribution.

The integrations over the coordinates of a two-
center charge distribution are to be performed
via the bipolar coordinates2,17:

Jav - f dr, f R rAdrB f dovsR-1. (6)

The expansion of a product of two spherical har-
monics on the same center is given by

Yll”‘x(e(p) le”‘zw(p)

¢,

= ’

(mz";mz) ((211 + 1)@, + 1)1 + 1)) 1/2
47

=iyl m

X q,, (Lymy, lamy)Y, (09), V)

where the prime on the summation over [ implies

Al = 2, and the sum over m denotes that m takes
the two values, m, and m_, given by

(8)
(9)

m, = sgn(m,) sg'n(mz)l(]m1 l’i}mz Di,

sgn(0) = 1.

and
sgn(x) = x/ |x],

The functions ¢, have been described.1,8 Expan-
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sion of the inverse interparticle distance is given
by

"12‘-2 E

1=0m=-1

t?’_l-lem(glﬁl’l) Ylm(92¢2)’

47 o
21+ 1
(10)
where ¢ and y denote, respectively, the smaller
and greater of 7, and 7,. The following expansion
is used to transfer a solid spherical harmonic
from center B to center A:18-23

7
20 +1\1/2 Ky l-K
Kzlj:n | < ml) P (tm)r R

YK,,L(BA(PA) ’

l
Y, (6505) =
(11)
where the constant p, is defined by

Krm — 1/2
pyim) = G2 (e ) )

The parameter definitions,

n,=mn, +n,, (13)

a O(=§1+§2,

n,=ng +ng, B==Cs+L, (14)

are used in the sequel.

O. CHARGE DISTRIBUTION POTENTIAL

The reduction of the potential function U, of Eq.
(5) is straightforward.2>8,11 Combining Eqs. (7)
and (10), using the orthogonality properties of the
spherical harmonics and collecting terms gives
the result:

ll l
4T 1/2
2 (@)

XY, (9A2 Ou2Vom (T a2) -

(myimp)

Uy(2) =

(15)

The one-center charge distribution function is
thereby defined:

Jim®)

x (B, . (ar) + A4, (@),

= Ny Nogy, (Iymy, lymy)rna
(16)

in which the auxiliary functions E, and A, are as
follows:
amn

1
E (x) = fo dt tr exp(— xt),

o0
= [, dt t» exp(~ x1). (18)
The latter two functions, discussed in a later
section, can be quite easily computed! through
recursion relations and series representation and
constitute no difficulty to the calculation of the
function f, . Therefore the one-center charge
dlstnbutlon is an elementary function and has a
parametric dependence only on the quantum num-
bers and orbital exponents of the two orbitals
located on nucleus A.

4,60
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III. HYBRID INTEGRALS

Incorporating the expression for the potential,
U, of Eq. (15), gives the following equation for the
hybrld integral of Eq. (3):

47

1/2
H = NN, Jav, ZZ) (21 ¥ 1> Yy(8a2 Paz) fimTaz)

X 7223 exp(— c37‘,42)7’4;1:_1 exp(— §4732)

X [@1; + 1)@l + D]TV2Y, 6, 04)Y),

X (OBZ(PBZ). (19)
The two functions on center A, 1§3m and Y, ,can be
combined through use of Eq.(7) to give a sum of
terms containing Y ;,,. The harmonic on center B
can be transferred to center A with Eq.(11), giving
Yy, Finally Eq. (7) can be used to combine the
lattér with Y ,,, to yield a series containing Y.

ll"‘lz (ml,mz) l+13 (m'ma)
H=NyNy, 2 5 [dVefi,tu) o O
=G| m L=Ll-13| M
L v (Mymy)
’ +K-1
A=1£L\:‘—IKI ? 743 7 expl— €37 42)
X T;glq_l exp(— §47’32)RZ4AK(2L + Lpllymy)

2A + 1\ 172
X qp y(lzmg, Im)q , (LM,Km,) ("4{“)

K=1m,|

YAp(eAZ(pAZ)' (20)

The integration over the angular variable ¢ 4, can
now be performed:

27 0
fo deY,,(09) = 6,,(4m)1/20](cos0),

where @ is a normalized, associated Legendre
function. The total integral is nonzero only if u=0,
which implies M = m,. Specifically, this means
that the equation

(21)

sgn(m,)|m, | = sgn(m,) sgn(m,)

x sgn(ma) [ 1(Imq |+ | my )| + Imgl]l  (22)

must be satisfied with at least one of the four
possible choices of + signs. The particular form
of the orthogonality relation in Eq. (22) is a con-
sequence of the order in which the three spherical
harmonics have been coupled and is equivalent to
the conditions

sgn(m,) sgn(my) [ (Imy | = {my )]

= sgn(mg) sgnl(my) | (Img] 2 [my ). (23)

The remaining integrations indicated in Eq. (6) can
now be performed to give the final result:

Iy*ly (mymy)

H= 2/ E f A7y f1 (T2 F,

il

(TA), (24)

with the second charge distribution function F,
given by
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Igtl  (m.mg) , LK

2 by, 2 2

L=lg-il M 4 K=m,] A=IL-K!

2L + l)pK(l4m4)qu4(l3m3, Im)q,o{Lmy, Kmy)

1,~K-1 n.tK
4 3
Ya

N3N,

lm ’rA)

xR exp(— $374)By 0,1, a5 B; ),

(25)

where the auxiliary function B is simply related to
the previously defined? function &,

B, ,(r,R;¢) = @A+ D12®"(r,R;¢).  (26)
These functions are discussed in detail in a later
section.

In passing, it should be noted that the two—-center
overlap integral
S = [dVyxs(4, x(B, 1) (27)

can be evaluated as a special case of the hybrid
formulation. The spherical harmonic Yl4m4 on

center B is transferred to center A via Eq. (11)
and expanded with Ylsma by using Eq. (7). The

result, after performing the integrations in Eg. (6),
is given by

(= 9]
S = J, @nFoo). (28)
Although this is a particularly simple result, more
direct procedures are available16 which are not
encumbered by the final numerical integration.
However, once the functions F,, are available, the
evaluation of the two-center overlap, nuclear
attraction, and kinetic energy integrals can be
achieved through a minimal computational effort.
In particular, the latter integrals are obtained
from the following:

Vy = [dV,7:}x3(4, Dxa(B, D), (29)
Vy, = fo ar, L Fyo(7,), (30)
and
T = [dV[- :Vixs(4, D]xaB, 1), (31)
T =nglsVy — 383S— 3y + I3)ng — 13— 1)
o0
X fo dr, 772 Foo(7)- (32)

IV. COULOMB INTEGRALS

The development of the Coulomb integrals follows
similar lines as those described above. The
angular dependence is exhibited in the form

41 \1/2
C=NgNg dez <2l +1 ) Y, m(Ba2Paz) fim(Va2)

02 exp(— Brgy)[(2l5 + 1)(2k + 1)]71/2

X 154
X Ylsms(eBZ(pBZ)Yl (652 9p2)- (33)

6™g

Firstly, the spherical harmonics on center B are
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combined by using Eq. (7) to yield ¥;,,(65¢5).
Secondly, the latter is transferred from center B
to center A through Eq. (11) giving ¥;,(8,¢,).

Thirdly, the latter is combined with ¥;,, to yield
a sum of terms containing Y,
L+ly (my.my) Ig+lg  (mg,mg)

C=NgNg 2 2 fdvzflm(r,qz) 2 2

Llil,)  m L=lsLl M
L *tK  (M,m)
K n,-L-2
2 X 2o vaareh expl— Bryy)
E=IMI| A=1I-KI 4

X RL_K(ZL + I)PK(LIW)‘ILM(lsmS! l6m6)

X gy, (KM, Im )<2A; >

an(0a2@a2).  (34)

Integrating over the angular variable ¢,, gives
o w02 implying M = m and the following ortho-
gonahty conditions:

sgn(m,) sgn(my)| (Imy| £ [my|)]

= sgn(mz) sgnimg)|(lmg| = lmgl)!. (35)
Again this equality must be satisfied by some
choice of the + signs for the total integral to be
nonzero.

Performing the remaining integrations in this case
now yields the final Coulomb result:

14y (mymy)
C = El E f dyAflm(TA)Glm(rA) (36)
1=12,-1,1 m

where the new charge distribution function G is
defined by

Igtlg (mg,mg) L K+l
G =N 2 D by 2 2
A Ve Leli-tgl M MR ASTE-1)

@L + 1 (Lm)g;,,(Isms, lgmg)g ,o(Km, Im)

x R¥*YWNB, a0, R; ) (37)
Comparison of G with the hybrid charge distri-
bution F, in Eq. (25), reveals that the constants and
functions required are all identical. Thus, tables
of the constants p and ¢ and a routine for the cal-
culation of the B functions are all that is required
to generate both F and G.

In passing, it should be noted that the charge dis-
tribution function G,, can be used to evaluate the
nuclear attraction integral

Vy = fd Vi TXtIXS(B’ t)XG(B.» £) (38)
from the expression
vy = LwdrArglcoo(rA). (39)

In addition, the accuracy of the procedure can be
partially assessed by examining the value obtained
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for the one-center overlap integral:

det x5(B,£) xe(B, ) = fwd"Acoo("A)

= 611, 0 my my N5Vl (215 + 1)(20g + 1)]71/2n,!

x gL, (40)
V. EXCHANGE INTEGRALS
The exchange integral E is written as follows:

E = [dV,U,,(2)x;3(4, 2)x,(B, 2), (41)

where the two-center, one-electron potential U, 5
has the form

= [aV,x,(4, )xg(B, )71}

Thus, the exchange integral differs from the hybrid
integral of Eq. (3) only in the use of the two-
center potential function U, instead of the one-
center potential U ,.

Ua5(2) (42)

The expansion for »71 in Eq. (10) is first intro-
duced giving a sum of spherical harmonics, ¥,,,

U,5(2) = NoNg [aV, E E(m T 1)‘7 yil

X Yy, (04202) zm(9A1¢A1)7A1 exp(— £77 41)

X 78 exp(— Lgpy) [(21, + 1)(21g+ 1)]71/2

XY, (041041 Y1, (0510 51); (43)
where ¢ and y signify, respectively, the smaller
and greater of 7,; and 7,,. The similarity of this
expression with Eq. (19) for the hybrid integral
suggests similar handlihg of the two cases. There-
fore, Eq. (7) is used to combine Y,, with ¥, . to

give Y, . The function ¥, ,, is transferred to

center A using Eq. (11) to glve YKm . Finally, this
is combined with Y, to yield Y,

0 4
Uyp@) =N,Ng 2 2 [dviolyi-1(20 +1)71/2
1=0 m=-1

4l (m,my) g L+K (M, my)
x ¥, (8 y oo X X L
{0422 L=l-tl M K=Imgl MIL-Kl g
n, +K1 ng -1
”Al exp— £7741) %7 exp(— {g75y)

x R Q2L + 1)p (lgmg)qy y (L;mq, Im)

X g5, (LM, Kmg) (2A + 1)V/2Y, (6,1041). (44)
Integrating over ¢,; from Eg. (6) gives §,, and the
requirement that M = mg. The remalmng integra-
tions give the result

(my,mg) oo

ZE(zzz—‘lI—lj)l/z

X Y (040 042)X ) (a2)s

Up(2) =

(45)
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where the exchange charge distribution function
X,,, is defined by

X, ,,(r) = fo oodtel(t)Fl’m(rt), (46)
where

) =t', o0=t=1, (47)

e =t"1, 1=ts o, (48)

and the prime on the function F;,  is to indicate
that the parameter subscripts 3 and 4 in the defini-
tion of F in Eq. (25) are to be read 7 and 8 for use
in Eq. (46).

When the two-center potential U, is inserted into
Eq. (41), the reduction of the exchange integral
follows exactly the procedure outlined above for
the hybrid integral, giving the final result

(my,mg) oo

E= 2, EI fo 00drAX,,,,(rA)FZ,,,(rA),

1=lm
which contains the orthogonality condition that the
equation

(49)

my = sgn(m) sgn(my)|(lm| £ {mgl)| (50)
or equivalently,
sgn(mg) sgn(my) | (Img] + Imyl)]

= sgn(m,) sgn(mg)|(lm,| £ Imgl)] (51)

must be satisfied in order for the total integral to
be nonzero.

The two-center hybrid charge distribution functions
F,,, can therefore be used with an infinite series

to recover the exchange integrals. Since the final
integration is to be performed numerically, the
functions F;,, canbe assumed to be tabulated for
certain values of », over the range of the integra-
tion variable. The function X,,, is defined in such
a way that it can be computed using the same set

of tabulated function values as are needed in Eq.
(24) for the hybrids.

V1. AUXILJARY FUNCTIONS
A. The Function B A

The definition of the function B,, can be written in
terms of its integral representation:

Rtr
B, ,(ry, R;8) = (A + 1)1/2fI R-'rjl drgry expl— {rg)
X ®9 (cosd,). (52)

This is transformed into a sum over the special
functions16 7, as follows2:

n+l nih v u-A
BA,n(rA’R; C) =0 eXp('- C'}’) Z()) <;>
nt2A-u “

x Z()) (€0)’ (k)W (A, ), (53)
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where ¢ and y represent, respectively, the

smaller and greater of , and R, and the con-
stants W, are given by

v e (2]

qugh(A, n) (_ 1)h+v

&0
9 <g+h> (g+h+v+
g

g+h 1)]-1
B () 1))
where

ho = max[A —g,A —u,v—g],

-1 A 2 A-g-u

2

h=hg

(54)

(55)

and the constants @ are defined:

qugh(A, n) = 21/2(2A + 1)(_ 1)n+/\+u+v <A> 2

g
pa R
. A_
X 27 (" )( & )
]53 ;E,:o (])( k A+jit+k—nh
% n+A—g—j—k
u+h—A—j—k)’

in which

jo = max[0,g + & — 2A], (57)

j; = minln,g +h— Aju + h— A, (58)

ko = max[0,h — A — j], (59)
by =min[A—g,g +h— A—j,h +u— A—j].
(60)

Although the lower summation limit of the index v
in Eq. (53) is explicitly zero, a more precisely
defined limit has been discussed24 and is
max[0,x — n]. The constants W,, need be com-
puted once and stored within a computer peri-
pheral memory for use in computing the functions
B.

The most time-consuming operation arising in the
evaluation of the functions B involves the computa-
tion of the functions 7,.

These can be related to the previously described16
functions f#' The recurrence relation

1) =2 MBIy )1 @), 6
with the starting functions,

Iyx) = x~1 sinh(x), (62)

I_;(x) = cosh(x), (63)

can be used with a 16-digit double-precision com-
puter word to yield no less than ten significant
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figures whenever

x = (dvy,, — /100 (64)

max
is satisfied: v, is the largest index value re-
quired. When x is too small to use the relation in
Eq. (61), then the continued fractionl6,25

I(x) = 7 ()1, (x), (65)
where
_ x27,, &) -1
7ol = (1 T 000 3)) ’ (66

can be used quite efficiently and the number of
terms required to obtain the same accuracy is
given by the integer ¢ satisfying the equation

7. 5¢

t>2.5+ (67)

max

Since the I, functions can be related to the func~
tions Ey, of Eq. (17):

) =2 ) 3 5, (20 () @

()2

an alternative representation of the B functions
can be written:

n+A v u-A
By (7, R; €) =07*1 exp(to — ¢v) Z)O (;)
nt2 A-u
X 2, E,(2t0)P,,(,n),

V=

(69)

where o and y are again, respectively, the smaller
and greater of 7, and R; the index v, is given by

v, =max|0, A— u; (70)
and the constants P, are defined by
Wty = 5 3 Quogslds, n)( ) (71)
£=8 h=hy
with
g0 = max[0, A — ], (72)
h1=max[A—g,A-—u,v—-—g], (73)
hy = min[n +2A —u — g, v]. (74)

The constants P,, are simpler fo compute than
W, of Eq. (54), and the former can be computed
with absolute accuracy since only a sum of inte-
gers is involved, The availability of two distinct
representations of the B functions provides a good
means for checking computational accuracy.

B. The Functions A, and E,

The functions A4, of Eq. (18) are obtained through
the recursion relation

DAVID M,
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A,(x) =[nA,_,(x) +exp(—x)]/x (75)
with the starting function given by
Aylx) = x~1 exp(—x). (76)

The functions E, of Eq. (17) are needed for the
evaluation of the one-center charge distribution
function f;,, in Eq. (16) and can also be used for
the evaluation of the B functions. The recursion
relation

E,(x) = [nE,_ ,(x) — exp(— x)]/x Vi)
can be employed with the starting function

Ey(x) =x"1 — exp(—x) ], (18)
when the maximum index value required » .. and
the variable x satisfy the equation

% = (ng .y +6)n,,,/80. (79)

This will guarantee ten significant figures out of a
16-digit computer word. When x is too small to
satisfy this relation, the recursive procedure in
Eq. (77) loses too many significant figures and the
inverse recursion is required:

E,(x) =[xE, ,{(x) +exp(—x)])/(n +1). (80)
The starting function can be obtained! by using a
Taylor's series expansion:

(81)

E,(x) = Z;O e — "’

n+ k(€)

about fixed values ¢; but this requires the storage
of tables of function values E, (¢) for closely
spaced intervals €, In addition to the infinite
seriest,11

5"
(82)

E,(x) = n! exp(— x) 5

k=0 (n +k +1)!
the starting function can be obtained by setting

E, o (x) =0 (83)

n

and recurring downwards with Eq. (80), If m is
taken to satisfy the equation

m>5+n,,./2, (84)
this ensures accuracy for the required set of E
functions. For x greater than 2z + 20, E, (x) has
the asymptotic valuell

~ne-]

E,(x) ~nlx (85)

VII. DISCUSSION

As can be seen from Eq. (25) for hybrid integrals,
a set of B functions must be computed which de-
pends only on x, at center B. This set of function
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values can then be coupled with all possible orbi-
tals on center A to form all two-center charge
distribution quantities needed. In the case of the
Coulomb integrals, a new set of B functions is
needed for each new two-orbital charge distribu-
tion on center B. However, the resulting function G
of Eq. (37) is used with all possible orbital choices
on center A4;in this way, the time required per in-
tegral is kept low.

Another feature arising with Coulomb integrals is
that the summation parameter L appears as an
argument of the second index of the functions B.
Thus, a table of B-function values is needed; how-
ever, all of these functions have the same argu-
ments 7,, R, and 8. Thus, only one set of auxiliary
functions I, or E, need be computed to produce
the full array of required B functions. Since the
calculation of the I, or E, functions is the time-
limiting step, the time required for computing B
functions is kept from becoming excessive.

The final integration over 7, indicated in Egs. (24)
and (36) is performed numerically by splitting the
range into two intervals, namely, (0, R) and (R, ).
This is a natural choice since the calculation of the

B functions splits into the same two ranges. Gauss-

Legendre quadrature262 js employed in the first
range after a suitable change of variable. In the
second range, since the functions B contain an ex-
plicit exponential dependence of exp(— CrA) and for
hybrid integrals an additional exponential factor
embedded in F, a Gauss~Laguerre procedure?26éb
could be used to take account of this property.
However, because of the presence of different
orbital exponents for each charge distribution, a
different set of integration points would be re-
quired for each new charge distribution. There-
fore, to make efficient use of the charge distribu-
tion concept, a Gauss—Legendre process is better
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suited to the second integration range, since all
integrals can be evaluated using the same set of
numerical grid points in this case. It should be
noted that the argument of the I or E functions re-
quired for evaluating the B functions in the outer
integration range is a constant: {R, A partial
check on the over-all accuracy of the numerical
integration schemes is provided by the use of

Eq. (40).

To obtain the exchange charge distribution function
X,,, of Eq. (46), the integration is split into the two
ranges (0, R/r) and (R/r,©). This takes cognizance
of the fact that the functions F,  are tabulated for
a specific set of integration points over the two
ranges (0, R) and (R, ®). The exchange integral can
thus be evaluated by performing the quadratures
in both Eqgs. (46) and (49) by using the already
tabulated function values. This is tantamount to a
final double numerical integration plus the infinite
series. The fact that the hybrid charge distribu-
tion functions F,,, can be reused for this purpose
is encouraging, but the previous exchange scheme3
has an advantage in that it involves an infinite
series with only one final numerical integration.

The unified treatment for the Coulomb and hybrid
integral types makes double use of the one-center
charge distribution functions f,,, of Eq. (16). The
two charge distributions F,,  and G, of Eqgs. (25)
and (37) require all the same auxiliary functions
and the same constants. The latter are quite
simple and only small arrays of them are needed.
Exploitation of these features offers a consider-
able savings in the computer evaluation of these
integrals. Furthermore, all the two-center, one-
electron integrals (overlap, nuclear attraction, and
kinetic energy) can be cbtained concurrently by
making use of the various charge distribution
functions calculated for the two-electron integrals.

* Work supported by the Department of the Navy, Naval
Ordnance Systems Command, under Contract No.N00017-62-
C-0604.
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This paper is a continuation of Paper I [J.Math,Phys. 11, 1069 (1970)]. A general expression is deter-
mined for the stochastic Green's function (SGF) for two-point correlation functions, and various useful
relationships are determined between the stochastic Green's functions for various statistical measures
and between the stochastic Green's functions, random Green's functions, and ordinary Green's functions.
In the author's dissertation and earlier papers, SGF was given as an ensemble average of the product
of random Green's functions. This random Green's function is now specified in terms of an ordinary
Green's function for a deterministic operator and a resolvent kernel which can be calculated for the
random part of the stochastic operator. Hence that SGF is determinable which yields the desired sta-
tistical measure of the solution process directly. Second, the two-point correlation function of the solu-
tion process is found for the perturbation case. It is also demonstrated that, in the event that perturba-
tion theory is adequate to deal with the randomness involved, the correct two-point correlation of the
solution process is easily specialized from the general expression, i.e.,the results of perturbation
theory are obtained from the SGF of Adomian when perturbation theory is applicable.

1. GENERAL STOCHASTIC GREEN'S FUNCTION
FOR CORRELATIONS

The present author! has defined the “stochastic
Green's function” (SGF) for correlations as the
kernel G relating the output (or solution process)
correlation R, to the input correlation function
R, in the expression

Ry(t,ty) = [[Gylty, ty, 71, T)R, (74, Tz)dTldT%l. )
A very detailed example, for the special case
where stationarity could be assumed throughout?
gave the spectral density for a randomly sampled
random process and the well-known results of
filter theory in the limiting case of a deterministic
filter. Our purpose now is to look at the kernel

G, in a more comprehensive manner. Using ter-
minology and symbols of Paper I, we can write the
stochastic differential equation £y = x, where

L is a stochastic (differential) operator involving
stochastic process coefficients a, (¢, w), t€ T,

we€ @,F, ) as

y(t) = F(t) — [K(t, ) (r)dr, (1.2)

where
F(t) = [I(t, D)x(n)dT + Zcy@,.
Then
Ry(ty, t5) = {y(t)P ()
= ((F(ty) — JK(ty,7)y(r,)dry)
x (B(ty) — [K(ty, 13 )dro))

= (PP, — [E(y, 7)) Flt)ylr))dry

Ry (ty,ty) = (F()E () — [Ty, 1) P F(ry Ty — [y, T)F()F (7)) dr,

+ [0, 1) Tty T)F (@ F (ry)) drydry.

— [&ty, T,)F ()3 rp)Vry
+ [J® @y, Ky, Ty (r ) ()T dr,  (1.3)

Using Adomian's iteration procedure in Paper I, we
can write Eq. (2) in terms of iterated kernels as
used by Sibul3 thus:

YO =FO) ~ 3, Ji DmUalt, D, (14)

where K_ (¢, 7) is defined by the recurrence for-
mula

K (t,7) = fK(t, TOK, 1 (Ty,7)dTy, (1.5)

with K, = K.
Thus
y() = F()) — [K@, 7)y(n)dr
=F@) — [Kt,Do—y, +y3 + 7
=F(t) — [K(t, )yolr)dr + [K(t,7)y(7)dr —- -~
=YW +y2—-— ces
=F(t) — [K({t,7)F(n)dr
+ fK(t’ Tl)K(Tl, T)F(r)dT" - -

= F(f) +m§] S D)™, (8, T)F(7)dr.

If the sum is uniformly convergent,then summa-

tion and integration can be interchanged3 in (1. 4).4

Defining the resolvent kernel I'{(f,7) = Yim=0-

(— 1)K, ., (t,7) allows us to write very conveniently
y(t) = F(t) + [T, 7)F(r)dr. (1. 6)

Writing R (¢,, £,), we now have

(1.7)

*
In order to separate out (F(7,)F(r,)), we can rewrite (1.7) as

1944
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R, (ty,t5) = ff(F(H);‘(Tz)M(H — 1,)6(ry = ty)dr dry — [Ty, Tl)xF(Tl)}(Tz))G(Tz — t,)dr,dr,

— ff(f’(tz, T2)><F(T1)1};(Tz))5(Tl — t))drdry + ff(l"(tl, Tl)It(tz, 72)>,<F(Tl));‘(72)>d71dT2,

where

(F(r)F(ry)) = Rplry,7) = [[G(ry,0,)6(rs, 05)R, (0,,05)d0,do.

Substituting (9) into (8), we get

Ry (t;,t5) = ffffG(Tl, 01)6(7'2, 05)R, (01, 05)

X 8(ry — £,)b(ry — t;) d7,dT,do do, — ffff(l"(tl,‘rl))G(Tl,Ul)é(Tz, 0)R (0,,05)0(Ty — t3)

*
X dr drydodo, — [[[[{C(ts, 120G 7y, 01)5(72, 09)R (04, 02)6(7y — £ {)dT1d7ododoy

+ ffff(l“(tl, Tl)f‘(tz, 7'2))6(71,.01)&72, 09)R, (0, 05)dT dT5d0 d0,,

which is the same as the general expression

R(t),ty) = [[Gylty,t5,0,,0,)R, (01, 0,)dodoy,

where

*
Gy = [[G(ry,0))Clry,0.)8(r, — 1,)8(r, — t,)dT dr,

x dTldTZ - ff(f'(tz, T2)>G(T1, 01)6(727 02)5(71 - tl)dTlde + ff<r(t]_’ Tl)lt(tzy Tz))

*
X G(r4,0,)G(1,,05)dT,dTy

is the stochastic Green's function5 if two-point
correlations are used for the statistical mea-
sures of the input (forcing function) or output (solu-
tion process or dependent variable). [We have,

as before, used statistical independence of the ran-
dom coefficients and the forcing function to sepa-
rate ensemble averages involving I' and F(£).]
When there is no random term (R = 0) the last
three terms of G, are zero, so

*
R (ty,t) = ffG(tl, 04)G(ty,0,)R(04,05)do,do,,

where G's are, of course, ordinary (deterministic)
Green's functions.

2. RELATIONSHIPS BETWEEN KERNEL FUNC-
TIONS (OR SGF'S FOR VARIOUS STATISTICAL
MEASURES)

In I, the SGF's were given for various statistical
measures of input and output [see Egs, (I.2.1) for
Ry(t ,¢5) or (1.2.3) for R, (B) (assuming stationa-
rity) or (1. Z.4) for the spectral density (also as-
suming stationarity holds)]. Equation (1.10) in
this paper seems to show a more complicated
kernel. Thus

Rty 1) = J[Gfty,15,0,,0.)R (0}, 0,)do do,,

where the SGF G, is given by

(1. 8)
(1.9)

- ff<r(t1; 7'1)>G(71; ol)é(sz 0'2)5(72 - tz)
(1. 10)

—
Gy = Glty, 0,)Clty, 05) — J(D(ty, 71)Glry, 07)
X a(tz, oy)dry — f(f‘(tz, 7o) G{t1,04)
X &1y, 05)dry + [[(T(t,, 7)) T(ty, 75)

X G(1y, 01)C (15, 0, )dT,dT,. (2.1)

This kernel is of course identical to the corre-
sponding kernel in Paper I. There,the H is a
stochastic operator and k(f, o) is a random Green's
function, not the Green's function G corresponding
to the deterministic operator L~-1.6 From (2.1) in
Paper I we had

Gylty,85,04,0,) = (h(tl, Ul)h*(tgy 02)>,

which is the same as (1.1) above. Hence we see
immediately that

h(t,0) = G(t,0) — [T, 7)C(r,0)dr, (2.2)
a rather simple relation between the various
Green's functions: the random Green's function
h,a random quantity from which the SGF is easily
found, the deterministic Green's function G (or
sometimes 1), and the resolvent kernel. Thus the

results generalize and make more useful some of
the results of the author.2

This expression clearly shows we can indeed
compute the SGF for any statistical measure, e.g.,
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for R (t,,t5),as soon as  can be determined (by
the indicated average of a product of % functions);
and % can be determined since it depends on the
known G and the resolvent kernel I', which can be
found for reasonable operators R. Thus,for a
given stochastic differential equation, after decid-
ing we want a particular statistical measure (s.m.)

of the solution process, we calculate the appropriate

SGF which yields the desired s.m. in terms of the
s.m. of the given random input.

3. PERTURBATION CASE FOR CORRELATIONS

In the event that perturbation theory is adequate

to deal with the randomness involved (see I), we
can let R = e£,, where (£,) = 0 is the general
expression for the stochastic Green's function.
First, however, let us see the results to be expec-
ted by extending the conventional approach as used
for the expectation (y) to the case of correlation

y(@#) = L~1(Ox(f) — eL 1O (L1 (Ox(t) + 2L 1L (LI L, (L 1()x(1),

G. ADOMIAN

measures R (f1,t,) = (y({)y(t,)):

y=L1lx—eL-18,y
=Ly — eL-1L, [y, + ey, + €2y, + O0(e3)]
=L-1ly — eL-1L,L"1x + 2L-1L,L-1L,L-1x
— 0(e3).

Hx =g+ eg; + elg,, with (g7) = (g5} = 0, ab-

sorbing the means into (go), if they exist, leads
immediately tol

() = L~2x) + 2L~ (L L-18, )L 1),
() =[1 + 2L~K L, L-18)]L-1{g,),

assuming I and x are uncorrelated,as in I. In
the same manner we can extend to correlations
R(t,,1,):

(3.1)

y(t) = L-1g, + eL-1g, + €2L-1g, — eL-18 ,L-1g, — €2L-1L L~1g, + 2L-1L L-18£,L-1g,,

Ryfty, tg) = (L71(t1)go(t)L1(t5)go(ty)) + eL1(t)go(t) L2 (ts)g, (tp)) + €2{L=1(t))8o () L2 (E,)85 (2,))
— €LT(t) 8ot ) L1 (t,) £, (L) L 1(ty) 8o (ts)) — €2(L1(t) 8ot L1(ts) £, (L) L1(t,) g, (1))
+ €2(L1(t,) gt ) L1 (t) £ 4 (t) L1 (E,) £, (E) L1 (t5)go(t5)) + (L1t ))g; (E) L1 {E)80(t))
+ e2(L1(t)) g, (£,) L1t ,) g, () — €2(L1(t1) g (¢) L1 (ty) £ () L1 ((5)g o (E2))
+ €2(L 1)) g (8 L1ty g0 (tn)) — (L1t ) L (E) L1t )80 t1) L1 (ty) 8o (E,))

- 62<L-1(tl)£1(tl)L_l(tl)go(tl)go(tl)lf_l(tg)gl(tz)> - €2<L_1(t1)£1(t1)1f'1(tl)gl(tl)L_l(tz)go(t2)>

+ €2{L1(t) L, (8) L1 (ty) L4 (¢) L2 () g (E) L1t g (Eo))-

(3.2)

The fourth, fifth, ninth, twelth, and thirteenth terms vanish because (£,) = 0. Rewriting in terms of the
Green's function I(f, 7) rather than the operator L—! and rearranging in powers of ¢, we obtain

Ry(tl, ty) = ffl (£1,7y )l(tga Tz)[<g0(71)go(72)> + G(go(Tl)gl(T2)> + €<g1(7'1)g()(72)> + 52(g0(71)g2(7'2)>
+ €2(g,(11)g,(T5)) + €2(gy(1))go(ro))ldr a7y + €2 [[[f1t,, T )y, 7o) U(ry, T35)U75,74)

X (L1 (T) L1 (Ta)) {go (1) (T )T - < dTy + €2 [[[fUty, T)UT 1, 7o) U7y, T3tz T,)

x <£1(71)£1(Tz)> <g0(7‘3)g0(1’4)>d71. “edr,.

(3.3)

Rearranging the order of the last two terms and of the repeated 7's to see the symmetry better, we

find

Ry(t]_’tz) = ffl(tp Tl)l(tZ, Tz)[<go(71)go(72)> + €<go(71)g1(72)> + €<g1(71)go(72)> + €Z(g0(71)g2(72)>
+ €2(g1(11) gy (1)) + €2{ga(7y)go (T N dry + €2 [[[[U(ty, 7 DUy, TUTY, TPy, T5)

X AL, (1)L, T DN go(T))g(To))dT dT dTYdT, + €2 ffffl(tz, To)(T, THU(TY, TE)(E,, T1))

X (£,(15) £ (T5) X go(T1) g0 (T5))dT ydThydT hdT |

(3.4)
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4. PERTURBATION RESULTS FROM STOCHAS-
TIC GREEN'S FUNCTION

We now use Adomian's stochastic Green's function
(SGF) [for correlation measures of input and out-
put from Eq. (1. 10)] to verify the perturbation
case, i.e., the case where randomness is relatively
insignificant, and hence could be handled by con-
ventional perturbation theory. To calculate the
SGF, we need the resolvent kernel T’ i.e.,

=21

Since K, (¢,,7,) = G(t;,7,)R(7,) and R is zero
mean, clearly

(I(]_) = O,
and
—Ky(ty, 7)) =— [K(t,, T))K(ry, 7,)d7}

=— [Glt,,7)eL, (1) Glr], 1)L (T,)dT],

which we get by replacing R with e£, (see Paper
I). Hence

F(tly +1(t1’ )

(D(t,7,)) = 0 + (= Kp(t;,71)) +O(e3).
Thus, to order €2,

(D(ty,71)) = — €2 [Glty, 74) G(71, Ty (L4 (7))

X £,(r,)dry.
The four terms of the SGF G, are now easily
determined. The first term 1s simply G(t,,0,)

G(t,,0,). Since x(1) = g(t) + eg,(t) + €2g,(1), we
have

R (0,,0,) = <x(01)x(02)> = <go(°' )go(oz»
+ €<g0( 1)g1(02)> + €2<g0(01)g2(0'2)>
+ €<g1(°'1)g0(0'2) + 52(8‘1(‘71)&’1(02))

+ €2<g2(0'1)g0(02)>-
We see? that
Rft),t)) = ffG(tl,ol)G(tz,cz)Rx(cl,oz)doldoz

gives exactly the double integral terms of Eq.
j

@) = [6(t, 1))
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(3.4). The remaining fourfold integral terms
come from the terms of G, which involve the
resolvent kernel I, specifically, the second and
third since the fourth is higher in € than we are
interested.

The second term of G is
— J(T@;,7)6(r1,0,)Glty, 05)d7

into which we substitute the calculated (T') from
above. Hence the second term for G, becomes

€2 [[G(t,,74)G(r},7,) G(r1,0,) Gity, 0p)
X (£(7)) L1(1 Nd7idT;.

The third term is
- fr(tz » Tz) G(tl, 01) G(Tz, Uz)de

or
€2ffc(t2’ 73)G(T%, 79)G(73,05)G(ty, 0,)

X AL, (15) L, (15))dThdT,,
which when used in the expression for R (¢, ty)
obviously is identical to the fourfold integral
terms of Eq. (3.4). Hence we have verified that
the results of perturbation theory can be obtained

from the SGF of Adomian when perturbation theory
is applicable.

5. PERTURBATION RESULTS FROM THE RAN-
DOM GREEN'S FUNCTION h(t,7)

The random Green's function k(f, 7) was given by
h(t,7) =

hence y(t) =

G(t, 1) — fr‘(t,o) G(o, T)do

Jn(t, 7)x(7)dr

y(t) = [G{t, T)x(r)dr — [[T(t, 0)Glo, T)x(r\do dr;

(5.1)

. Consequently,

averaging, we have
(@) = [6(t, ) ()T — [[(T(t, 0)G(

Expanding the resolvent kernel I'({, ¢) in terms of
iterated kernels, we have

o, 7)x(7))do dr.

ddr— [[G(t, T (R (r )Gy, ){x(r))dr dr + [[[G(t, 7)) G(r |, T5)(R(T )R (r,))

X G(7,, T)<x(7)>dedTldT - ffffc(tl, 71)6(71, 72) G(74, T3)<R(71)R (Tz)R (73)>G(73, 7){x(7))

X drgdt,dTdT + -

HER=eL +e28,andx =g, + €g; + €2g, = g,as before, we have

() = fG(t,T)((gO +egy + €2gy))dT — ffG(t,Tl)(€£l(Tl))G(Tl., T)(go + €8, + €2gy)dr dr
— [fet, T(€2L,(1,))G(1, T)godT dT + [ffat, TG(T1, T2 L, (7))L, (1,))G(1,, 7)

X (go + €81 + €2gy)dTodT dT + O(€3)

or, equivalently,
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(y() = L71(g, + €gy + €2gp) — €L~ L) L-1(g, + €gy) — 2L 1(L,y)L1g, + 2L 1L, L718)

X L-1g, + O(e3).

If (£,) = (£,) =0,
(y(®) = L~g) + 2L-KL,L71L,)L 1g,
or,if g, = g, = 0 so that g, = g,
(&) = (1 + 2L-UL,L-18 ))L-1g

as derived in Paper I. We have already demon-
strated that the correlation result, for the case

—

where perturbation theory is valid, can be de-
rived from the SGF. It clearly could be found by
writing A(¢, 7).
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A separate paper will deal with rates of convergence and

)

comparison with hierarchy methods.
5 QObviously some integrations can be carried out, but we
leave the expression this way.

6 [ has also been used in the author's previous work.
7 G, 1) = U, T).
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The problem-of wave motion in a stochastic medium is treated as an application of stochastic operator
theory and as a generalization of Papers I and II (and previous work by the author) to the case of partial
differential equations and random fields without monochromaticity assumptions and closure approxima-
tions. Connections to the theory of partial coherence are considered. The stochastic Green's function

for the two-point correlation of the solution process can be determined so the correlation can be obtained.
Spectral spreading in a “hot” medium is easily demonstrable and can be calculated.

INTRODUCTION

The problem of wave motion in a stochastic or
randomly inhomogeneous or fluctuating medium
arises in a number of interesting contexts in
physics and as a natural generalization of Paper 1
(Ref.1) to the case of partial differential equations.
The refractive index is assumed to be a random
point function or stochastic process (SP) rather
than a random variable. Use of stochastic distribu-
tions is, of course, suggested; however, it is desir-
able to keep the formulation initially simple since
there already exist a number of complexities not
present in usual treatments. (For the same reason
the nonlinear stochastic problem is deferred.)
Nearly all studies of wave propagation in a random
continuum utilize the monochromatic or quasi-
monochromatic assumption of harmonic time de-
pendence and essentially no spectral spreading,
and therefore proceed immediately to a reduced
wave equation or Helmholtz equation. Thus the
field quantity becomes a functional of a random
process k(x¥) rather than k(x, ¢) or, more complete-

ly, k(x, t, w), where w € (£, F, p), a probability space.

(See, e.g., Beran and Parrent? or Beran.3) Keller,*
e.g., considered the scalar (reduced) wave equation
(V2 + k252 (x )Ju = g(x ), where g(x) is the source

distribution and there exists an appropriate con-
dition on # and vu (radiation condition). % is the
propagation constant for the medium, and » is the
refractive index. Let n2(x) =1 + u(x ), where u(x)
is a zero-mean SP. Then (V2 + k2)u + R2u(x Ju =
g(x) or Lu = g, where £ is a gtochastic operator
separable into the sum of a deterministic operator
L = v2 + k2 and a random operator R, The deter-
ministic operator L = v2 + k2. The Green's func-
tion G(x — x’) = G(r) = exp(iky7) /417 = explik,|x —
x'1)/47!x — x'|. In a uniform or nonrandom
medium, # = 1 and (V2 + k2)u = g. The stochastic
medium may, of course, be considered an ensemble
of possible media with a probability distribution
giving probabilities for various members of the
ensemble.

The medium may not be known precisely, and the
objective is to determine what is likely; it may be
too complex to specify, or it may be randomly
fluctuating. Most results involving stochastic
equations in physics and engineering have been
obtained by averaging procedures, closure, or
truncation approximations (hierarchy methods,
perturbation theories, etc.), self-consistent field
approximations, and restriction to very special
processes. Many of these have correlated well
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(y() = L71(g, + €gy + €2gp) — €L~ L) L-1(g, + €gy) — 2L 1(L,y)L1g, + 2L 1L, L718)

X L-1g, + O(e3).

If (£,) = (£,) =0,
(y(®) = L~g) + 2L-KL,L71L,)L 1g,
or,if g, = g, = 0 so that g, = g,
(&) = (1 + 2L-UL,L-18 ))L-1g

as derived in Paper I. We have already demon-
strated that the correlation result, for the case

—

where perturbation theory is valid, can be de-
rived from the SGF. It clearly could be found by
writing A(¢, 7).

ACKNOWLEDGMENTS

This work has been supported by the National
Aeronautics and Space Administration under
Grant No. NGR11-003-020 and by the office of
Naval Research, under Contract No.N00014-69-A-
0423-Themis.

1 G.Adomian,J. Math. Phys. 11,1069 (1970).

G. Adomian, Ph. D. thesis (UCLA, 1961) (unpublished).

3 L.H.Sibul, Ph.D, thesis (Pennsylvania State University,
1968) (unpublished).

A separate paper will deal with rates of convergence and

)

comparison with hierarchy methods.
5 QObviously some integrations can be carried out, but we
leave the expression this way.

6 [ has also been used in the author's previous work.
7 G, 1) = U, T).
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The problem-of wave motion in a stochastic medium is treated as an application of stochastic operator
theory and as a generalization of Papers I and II (and previous work by the author) to the case of partial
differential equations and random fields without monochromaticity assumptions and closure approxima-
tions. Connections to the theory of partial coherence are considered. The stochastic Green's function

for the two-point correlation of the solution process can be determined so the correlation can be obtained.
Spectral spreading in a “hot” medium is easily demonstrable and can be calculated.

INTRODUCTION

The problem o